NXP Semiconductors PCA2125, PCF85x3, PCF2123, PCA8565 Oscillator frequency determining components

Page 11

NXP Semiconductors

UM10301

 

User Manual PCF85x3, PCA8565 and PCF2123, PCA2125

The values used in practice will be a bit smaller than the theoretically required values due to parasitic capacitances present in the application which add to the external physical capacitor.

For the PCF2123 the integrated CIN and COUT are dimensioned for a crystal which requires a load capacitance of 7 pF. If a crystal with required load capacitance of 12.5 pF is used still a small external capacitor is required, otherwise the clock will run too fast. For the other types the input capacitor CIN is external and needs to be mounted on the printed circuit board. The power consumed by the oscillator circuit is through the amplifier and losses in R1 of the crystal. Oscillation will start if the loop gain at 360° phase shift is higher than one. The oscillator amplitude increases until the over-all loop gain is reduced to exactly 1 through either non linear effects of the amplifier (self limiting Pierce) or through some form of AGC (Automatic Gain Control) designed in into the amplifier.

The resonating frequency can be pulled by changing the value of the capacitor at OSCI or by adding a variable capacitor CT at OSCO as shown in Fig 5. External capacitors at OSCI and OSCO should be connected to GND, except for PCF8573, PCF8583 and PCF8593. For the latter three it is better to connect these external capacitors to VDD instead because these devices are manufactured in a process that has the substrate connected to VDD (n-substrate). In the other RTCs the substrate is at VSS (p-substrate).

crystal

L1 C1 R1

OSCI

Cin

C0

Cstray

OSCO

CL

Cout CT

001aai727

(1) For PCF8573, PCF8583 and PCF8593 connect CIN and COUT (and CT if applicable) to VDD

Fig 5. Oscillator frequency determining components

The reactive components indicated in Fig 4 and Fig 5 determine the oscillating frequency. Near the resonance frequency the equivalent circuit of the crystal consists of the motional inductance L1, the motional capacitance C1 and the motional resistance R1 (in various literature also called series resistance RS). In parallel with this series circuit is the static or shunt capacitance C0. It is the sum of the capacitance between the electrodes and the capacitance added by the leads and mounting structure. If one were to measure the reactance of the crystal at a frequency far away from a resonance frequency, it is the reactance of this capacitance that would be measured.

When a crystal is chosen, such a crystal has a specified load capacitance CL. During production the crystal manufacturer has adjusted the resonance frequency of the crystal using exactly this capacitance as the load for the crystal. The actual value of CL as seen by the crystal in the application is determined by the external circuitry and parasitic

UM10301_1

 

© NXP B.V. 2008. All rights reserved.

User manual

Rev. 01 — 23 December 2008

11 of 52

Image 11
Contents Abstract Info Content KeywordsDocument information Rev Date Description Contact informationNXP Semiconductors Revision historyIntroduction Features Address Register name Bit Register overview PCF8563Comparison Event counter modeComparison of six real time clocks FeaturesVoltage-low detector Power-on reset PORPower-on reset Oscillator-stop detection OscillatorVoltage-low detection Overview of internal and external oscillator capacitors Pierce Oscillator equivalent diagramOscillator frequency determining components UM10301 + C Parameter Value Unit Source Typical values for crystal and surrounding capacitorsOscillation allowance Using an external oscillatorCrystal and crystal selection Modes which don’t work Effect of temperature− f nom Capacitors and capacitor selection Accuracy Influences on time accuracy Oscillator tuning Oscillator tuning 10.1 PCF2123 Offset register Daylight Saving Time DST Century and leap year, Daylight Saving TimeCentury tracking Year and leap year trackingBlock Diagram PCF8563 Initialization and setting of alarm and timerInitialization of the RTC and setting the time Register Comments Address AlarmSetting the alarm Binary BCDAlarm function Register Setting the timerSetting the timer Lithium Primary cells Backup power supplyBackup circuit using primary lithium cell NiCd and NiMH secondary batteries Backup circuit using secondary cell NiCd or NiMH13.3 Capacitors Charging the backup capacitor BAS716 BAS116 BAV170 Diode selectionSome suggestions for diode D1 1N4148PCB layout guidelines PCB layout proposal for PCF8563 using leaded components Partial circuit switch down Protection diodes Hints to keep power consumption low0007 Rpmax as a function of bus capacitance 8473 ⋅ C bApplication diagram 2, SPI interface Application diagram 1, I2C-bus interfaceGeneral countdown timer behaviour First period inaccuracy when using the timerTimer delays Timer Source clock frequency Delay for n =Timer source clock Minimum timer period Maximum timer period First period delay for timer counter value nTiming requirements for I2C read and write I2C interface Block diagram I2C interface and Time countersSequence of events example Read Oscillator startup time Checking for oscillation TroubleshootingNo communication via I2C-bus Wrong time and date, wrong clock speed ReferencesTrademarks Legal informationDefinitions DisclaimersContents