Cypress CY7C1307BV25, CY7C1305BV25 manual Features, Configurations, Functional Description

Page 1

CY7C1305BV25

CY7C1307BV25

18-Mbit Burst of 4 Pipelined SRAM with QDR™ Architecture

Features

Separate independent Read and Write data ports

Supports concurrent transactions

167-MHz clock for high bandwidth

2.5 ns Clock-to-Valid access time

4-Word Burst for reducing the address bus frequency

Double Data Rate (DDR) interfaces on both Read and Write Ports (data transferred at 333 MHz) @167 MHz

Two input clocks (K and K) for precise DDR timing

SRAM uses rising edges only

Two input clocks for output data (C and C) to minimize clock-skew and flight-time mismatches.

Single multiplexed address input bus latches address inputs for both Read and Write ports

Separate Port Selects for depth expansion

Synchronous internally self-timed writes

2.5V core power supply with HSTL Inputs and Outputs

Available in 165-ball FBGA package (13 x 15 x 1.4 mm)

Variable drive HSTL output buffers

Expanded HSTL output voltage (1.4V–1.9V)

JTAG interface

Configurations

CY7C1305BV25 – 1M x 18

CY7C1307BV25 – 512K x 36

Functional Description

The CY7C1305BV25/CY7C1307BV25 are 2.5V Synchronous Pipelined SRAMs equipped with QDR architecture. QDR architecture consists of two separate ports to access the memory array. The Read port has dedicated Data Outputs to support Read operations and the Write Port has dedicated Data Inputs to support Write operations. QDR architecture has separate data inputs and data outputs to completely eliminate the need to “turn-around” the data bus required with common I/O devices. Access to each port is accomplished through a common address bus. Addresses for Read and Write addresses are latched on alternate rising edges of the input

(K)clock. Accesses to the device’s Read and Write ports are completely independent of one another. In order to maximize data throughput, both Read and Write ports are equipped with Double Data Rate (DDR) interfaces. Each address location is associated with four 18-bit words (CY7C1305BV25) and four 36-bit words (CY7C1307BV25) that burst sequentially into or out of the device. Since data can be transferred into and out of the device on every rising edge of both input clocks (K/K and C/C) memory bandwidth is maximized while simplifying system design by eliminating bus “turn-arounds.”

Depth expansion is accomplished with Port Selects for each port. Port selects allow each port to operate independently.

All synchronous inputs pass through input registers controlled by the K or K input clocks. All data outputs pass through output registers controlled by the C or C input clocks. Writes are conducted with on-chip synchronous self-timed write circuitry.

Cypress Semiconductor Corporation

198 Champion Court • San Jose, CA 95134-1709

408-943-2600

Document #: 38-05630 Rev. *A

 

Revised April 3, 2006

[+] Feedback

Image 1
Contents Configurations FeaturesFunctional Description CY7C1305BV25 1M x CY7C1307BV25 512K xLogic Block Diagram CY7C1307BV25 Logic Block Diagram CY7C1305BV25Selection Guide CY7C1305BV25-167 UnitCY7C1307BV25 512K x Pin\Configuration Ball Fbga 13 x 15 x 1.4 mm PinoutPin Definitions Introduction Application Example1 Operation Write Cycle Descriptions CY7C1305BV25 2Write Cycle Read CycleAre written into the device Write Cycle Descriptions CY7C1307BV25 2Operation Operation Document # 38-05630 Rev. *AIeee 1149.1 Serial Boundary Scan Jtag Sample Z EXIT2-IR UPDATE-DR UPDATE-IR TAP Controller State Diagram11Parameter Description Test Conditions Min Max Unit TAP Controller Block DiagramParameter Description Min Max Unit Set-up TimesIdentification Register Definitions TAP Timing and Test Conditions14Parameter Description Min Max Unit Output Times TCK Clock LOW to TDO ValidInstruction Codes Scan Register SizesRegister Name Bit Size Instruction Code DescriptionBit # Bump ID Boundary Scan OrderOperating Range Maximum RatingsThermal Resistance22 AC Test Loads and Waveforms Capacitance22Parameter Description Test Conditions Max Unit Input Capacitance TA = 25C, f = 1 MHz VDD =Cycle Time Switching Characteristics Over the Operating Range23NOP Read Write Switching Waveforms27, 28Ordering Information Package DiagramCY7C1307BV25-167BZC CY7C1305BV25-167BZXC CY7C1307BV25-167BZI CY7C1305BV25-167BZXIDocument History Issue Date Orig. Description of ChangeSYT NXR

CY7C1307BV25, CY7C1305BV25 specifications

Cypress Semiconductor, a leader in embedded memory solutions, includes the CY7C1305BV25 and CY7C1307BV25 in its family of high-performance synchronous dynamic random-access memory (SDRAM) devices. These memory chips are designed for applications that require high-speed data processing and low power consumption, making them ideal for communication systems, networking devices, and other consumer electronics.

The CY7C1305BV25 is a 512K x 16-bit synchronous SRAM, while the CY7C1307BV25 offers a larger capacity of 1M x 16-bit. Both chips operate at a maximum clock frequency of 166 MHz, ensuring rapid data transfer rates and efficient memory operation. This high-speed performance is crucial in applications where quick data retrieval and storage are imperative.

One of the standout features of these devices is their ability to support a wide range of operating voltages, typically from 2.5V to 3.3V. This versatility allows them to be integrated into systems with varying power requirements, enhancing their adaptability for different designs. Additionally, the chips offer a low standby power consumption level, contributing to energy efficiency in battery-operated devices.

Both the CY7C1305BV25 and CY7C1307BV25 utilize a synchronous interface, allowing for coordinated data transfer with the system clock. This synchronization minimizes latency and improves overall system performance. The use of advanced pipelining techniques enables these devices to process multiple read and write commands concurrently, further boosting throughput.

In terms of reliability and durability, Cypress ensures that these memory chips comply with stringent industry standards. They are designed to withstand a wide temperature range, making them suitable for operation in diverse environments. The robust design includes features that mitigate the risk of data corruption and enhance data integrity, which is a vital consideration in mission-critical applications.

Overall, the CY7C1305BV25 and CY7C1307BV25 represent Cypress Semiconductor's commitment to delivering high-quality, high-performance memory solutions that meet the demanding requirements of modern electronics. Their impressive features, combined with a focus on low power consumption and reliability, make them a preferred choice for engineers and developers aiming to create the next generation of innovative products.