Telit Wireless Solutions GE863-QUAD, GE863-PY manual

Page 29

GE863-QUAD

GE863-PY

1vv0300715 Rev. 1 - 19/09/06

and for a 5V receiver:

NOTE: The UART input line TXD (rx_uart) of the GE863-QUAD/PY is NOT internally pulled up with a resistor, so there may be the need to place an external 47KΩ pull-up resistor, either the DTR (dtr_uart) and RTS (rts_uart) input lines are not pulled up internally, so an external pull-up resistor of 47KΩ may be required.

A power source of the internal interface voltage corresponding to the 2.8VCMOS high level is available at the VAUX pad, whose absolute maximum output current is 100mA.

If VAUX is also used to supply a Camera no additional devices could be connected.

Pull-up resistors can be connected to the VAUX pad provided that the pulled-up lines are GE863- QUAD/PY input lines connected to open collector outputs in order to avoid latch-up problems on the GE863-QUAD/PY.

Care must be taken to avoid latch-up on the GE863-QUAD/PY and the use of this output line to power electronic devices shall be considered with care, especially for devices that generate spikes and noise such as level translators, digital ICs or microcontroller, failure in any of these condition can severely compromise the GE863-QUAD/PY functionality.

NOTE: The input lines working at 2.8VCMOS can be pulled-up with 47KΩ resistors that can be connected directly to the VAUX line.

NO disturbing devices should be powered with the VAUX line; otherwise the module functionality may be compromised.

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Right reserved

page 29 of 79

Image 29
Contents GE863-QUAD GE863-PY Hardware User Guide Contents 10.2 10.110.3 10.413.2 12.113.1 This document is relating to the following products Overview PIN-OUT GE863 module connectionsPin Signal Function Internal Type Pull up Pin Signal Function Internal Type Pins Layout Turning on the GE863-QUAD/PY Hardware CommandsTurning off of the device can be done in two ways Turning OFF the GE863-QUAD/PYHardware shutdown Hardware Unconditional RebootGE863-QUAD GE863-QUAD/PY power requirements are Power Supply1Power Supply Requirements Electrical design Guidelines 2General Design RulesAn example of linear regulator with 5V input is 1.2 + 12V input Source Power Supply Design GuidelinesAn example of switching regulator with 12V input is Battery Source Power Supply Design GuidelinesBattery Charge control Circuitry Design Guidelines Thermal Design Guidelines Power Supply PCB layout Guidelines GSM Antenna Requirements AntennaGSM Antenna PCB line Guidelines GSM Antenna installation GuidelinesSerial Ports Level Min Max Absolute Maximum Ratings -Not Functional Parameter Min MaxNumber Pad Number Signals in the Uart connector on the EVK are17-28-36 Ground 45-48-50-56 Clear to Send Output from the GE863-QUAD/PY that3RS232 level translation It is available on the following pins2MODEM Serial Port 2 Python Debug An example of level translation circuitry of this kind is 5V Uart level translation GE863-QUAD Audio Section Overview GM863-GPS Echo canceller type Handset Microphone Paths Characteristic and RequirementsEcho canceller type Car kit hands-free + 20dBYou can set GA= +20dB to use standard resistor values That meansTIP environment consideration Other considerations General Design RulesBalanced Microphone Biasing Microphone BiasingUnbalanced Microphone Biasing GE863-QUAD Sample circuit can be Microphone BufferingBuffered Balanced Mic Buffer gain is given by the formula Gain = RR604605 = RR607606Buffered Unbalanced Single Ended Microphone Buffer bandwidth at -3dB shall be 4KHz Freq . = 2π * R719* C726 2π * R711* C727GE863-QUAD Short description Output Lines SpeakerSW volume level step Number of SW volume steps Output Lines CharacteristicsNoise Filtering Handset Earphone Design An example of internal Ear amplifier could be Hands-Free Earphone Low Power DesignCar Kit Speakerphone Design Short Description Evaluation Kit for Telit Modules EVK2@ 350mW 2 EVK2 Audio Lines CharacteristicsESD Data IntegritySIM Supply SchematicLayout General Purpose I/O Using a Gpio Pad as InputUsing a Gpio Pad as Output Using the Buzzer Output GPIO7 10.3Using the Alarm Output GPIO611.1DAC Converter DAC and ADC sectionDescription Min Max UnitsCommand is AT#DAC=enable,value An AT command is available to use the DAC functionEnabling DAC Low Pass Filter Example11.2ADC Converter Using ADC ConverterInput Voltage range AD conversion Bits Resolution 12.1Transchip Camera CameraType Sensitivity LuxCamera Interface Connectors Camera Physical Detail & Connector Camera Socket Connector Camera Board Module Main Block Diagram for supported cameras Schematic Diagrams for supported camera Taking an reading a photo Camera setting shown here are the defaults onesExample usage script for camera 13.1General 13.2Module Finishing & DimensionsMounting the GE863-QUAD / PY on the Application Board Lead-free Alloy Surface finishing Ni/Au for all test padsRecommended foot print for the application PCB pad Design Debug of the GE863 in ProductionStencil Solder paste Following is the recommended solder reflow profile 13.2.6 GE863-QUAD / PY Solder ReflowGE863-QUAD Section A-A Packing SystemModules orientation on tray Moisture Sensibility Conformity Assessment Issues Safety Recommandations Revision Date Changes Document Change Log21/02/06 19/09/06