General pH Information
Integral
The integral value is used to reduce the steady state error, between the process value and the setpoint, to zero. For example, assume a process can be manually controlled at a level of pH 8.0 by sending a 35% control output level to a reagent pump. Now, say that the system is set up for the controller to provide proportional only control, with the controller setpoint set to pH 8.0 and the proportional band set to pH 1.0. Note that the nearer the process gets to the pH 8.0 setpoint, the lower the control output level is. In fact, when the process is at pH 8.0, the output level will be 0%. Since the process requires that the pump be operated at 35% for the process to reach pH 8.0, its apparent that
Integral control can be thought of as adding up the output action from the proportional control over time. For example, the proportional control output reaches a steady state level of 5%. If the integral time is set to five minutes, the integral action of the controller will add an additional 5% to the controller output level over a
Derivative
Derivative control is used to adjust the control output level based upon the rate at which the process value is approaching or passing the setpoint. Derivative control action would be used in cases where the process value can rapidly ramp up and overshoot the setpoint. The derivative setting is in minutes. The output action of the derivative control is equal to the rate of change of the process (in pH units per minute) times the derivative time, divided by the proportional band, times negative one. For example, if the process pH is changing at a rate of pH 0.20 per minute, the derivative time is set to 3.0 minutes, the proportional band is set to pH 0.80, and the action is “direct” the derivative control output action will be approximately equal to:
During calibration, the analog outputs can remain active, be held, or be transferred to a preset mA value.
49