Lincoln Electric SVM136-A service manual Electric Shock can kill

Page 3

ii

ii

SAFETY

Return to Master TOC

Return to Master TOC

Return to Master TOC

ELECTRIC SHOCK can kill.

3.a. The electrode and work (or ground) circuits are electrically “hot” when the welder is on. Do not touch these “hot” parts with your bare skin or wet clothing. Wear dry, hole-free gloves to insulate hands.

3.b. Insulate yourself from work and ground using dry insulation. Make certain the insulation is large enough to cover your full area of physical contact with work and ground.

In addition to the normal safety precautions, if welding must be performed under electrically hazardous conditions (in damp locations or while wearing wet clothing; on metal structures such as floors, gratings or scaffolds; when in cramped positions such as sitting, kneeling or lying, if there is a high risk of unavoidable or accidental contact with the workpiece or ground) use the following equipment:

Semiautomatic DC Constant Voltage (Wire) Welder.

DC Manual (Stick) Welder.

AC Welder with Reduced Voltage Control.

3.c. In semiautomatic or automatic wire welding, the electrode, electrode reel, welding head, nozzle or semiautomatic welding gun are also electrically “hot”.

3.d. Always be sure the work cable makes a good electrical connection with the metal being welded. The connection should be as close as possible to the area being welded.

3.e. Ground the work or metal to be welded to a good electrical (earth) ground.

3.f. Maintain the electrode holder, work clamp, welding cable and welding machine in good, safe operating condition. Replace damaged insulation.

3.g. Never dip the electrode in water for cooling.

3.h. Never simultaneously touch electrically “hot” parts of electrode holders connected to two welders because voltage between the two can be the total of the open circuit voltage of both welders.

3.i. When working above floor level, use a safety belt to protect yourself from a fall should you get a shock.

3.j. Also see Items 6.c. and 8.

ARC RAYS can burn.

4.a. Use a shield with the proper filter and cover plates to protect your eyes from sparks and the rays of the arc when welding or observing open arc welding. Headshield and filter lens should conform to ANSI Z87. I standards.

4.b. Use suitable clothing made from durable flame-resistant material to protect your skin and that of your helpers from the arc rays.

4.c. Protect other nearby personnel with suitable, non-flammable screening and/or warn them not to watch the arc nor expose themselves to the arc rays or to hot spatter or metal.

FUMES AND GASES can be dangerous.

5.a. Welding may produce fumes and gases

hazardous to health. Avoid breathing these fumes and gases.When welding, keep your head out of the fume. Use enough ventilation and/or exhaust at the arc to keep

fumes and gases away from the breathing zone. When

welding with electrodes which require special ventilation such as stainless or hard facing (see instructions on container or MSDS) or on lead or cadmium plated steel and other metals or coatings which produce highly toxic fumes, keep exposure as low as possible and below Threshold Limit Values (TLV) using local exhaust or mechanical ventilation. In confined spaces or in some circumstances, outdoors, a respirator may be required. Additional precautions are also required when welding on galvanized steel.

5.b. Do not weld in locations near chlorinated hydrocarbon vapors coming from degreasing, cleaning or spraying operations. The heat and rays of the arc can react with solvent vapors to form phosgene, a highly toxic gas, and other irritating products.

5.c. Shielding gases used for arc welding can displace air and cause injury or death. Always use enough ventilation, especially in confined areas, to insure breathing air is safe.

5.d. Read and understand the manufacturer’s instructions for this equipment and the consumables to be used, including the material safety data sheet (MSDS) and follow your employer’s safety practices. MSDS forms are available from your welding distributor or from the manufacturer.

5.e. Also see item 1.b.

Mar ‘95

Return to Master TOC

IDEALARC CV-400

Image 3
Contents Idealarc CV-400 California Proposition 65 Warnings SafetyElectric Shock can kill Cylinder may explode if damaged Sûreté Pour Soudage a L’Arc Précautions DE SûretéMaster Table of Contents for ALL Sections Table of Contents Installation Section Technical Specifications Idealarc CV-400 InstallationSafety Precautions Location and VentilationLifting Input Supply Connections Ground ConnectionReturn to Input Wire and Fuse SizeConnect Electrode and Work Leads to Output Terminals Reconnect Procedure Output ConnectionsFigure A.5 Output Terminal Connections Connect Wire Feeders Table of Contents Operation Section Safety Instructions OperationOperating Instructions Recommended Processes Operational Features and ControlsDesign Features General DescriptionLimitations Welding CapabilityFigure B.1 Case Front Controls Controls and SettingsRemote Control Welding OperationLocal Control Overload Protection Auxiliary PowerIdealarc CV-400 Table of Contents Accessories OPTIONS/ACCESSORIES Factory Installed OptionsField Installed Options Connecting the NA-3 to the Idealarc CV-400 Automatic Wire FeedersFeederterminal Connecting the NA-5 to the Idealarc CV-400Accessories Connecting the LN-7 to the Idealarc CV-400 Terminal Strip Semiautomatic Wire FeedersConnecting the LN-8 or LN-9 to the Idealarc CV-400 Idealarc CV-400 Table of Contents Maintenance Return to Return to Section TOC Safety Precautions Routine and Periodic MaintenanceFigure D.1 Idealarc CV-400 Table of Contents Theory of Operation Section Input Line VOLTAGE, Contactor and Main Transformer Theory of OperationOutput CONTROL, Rectification and Feedback Figure E.4 CV-400 Trigger and Thermal Light Circuit Protective Devices CircuitsFigure E.5 SCR Operation SCR OperationIdealarc CV-400 Table of Contents Troubleshooting & Repair Section HOW to USE Troubleshooting Guide Troubleshooting & RepairElectric Shock can kill PC Board Troubleshooting ProceduresOutput Problems Troubleshooting GuideOutput Problems SCR/Diode Perform the SCR/Diode Bridge SCR/Diode Rectifier Bridge Test Welding Problems Control Transformer T2 Voltage Test DescriptionMaterials Needed Control Transformer T2 Voltage Test Test ProcedureRight Side View Input Contactor Test Input Contactor Test Figure F.4 Input Contactor Test Connections Test for Contact ContinuityMain Transformer T1 Voltage Test Main Transformer T1 Voltage Test Figure F.6 Main Secondary Lead Test Points Blank Main Transformer T1 Voltage Test Static SCR/DIODE Rectifier Bridge Test Static SCR/DIODE Rectifier Bridge Test SCR Anode Remove ANY Insulating Paint Cathode SCR Active SCR Test Active SCR Test Figure F.15 Heat Sink Test Points Figure F.16 SCR Tester Circuit and SCR Connections Normal Open Circuit Voltage Waveform Maximum Output Setting no LoadTypical Output Voltage Waveform Machine Loaded Typical SCR Gate Voltage Waveform Maximum Output Setting no LoadONE Output SCR not Functioning Abnormal Output Voltage Waveform Machine LoadedDescription Input Contactor CR1 CLEANING/REPLACEMENTContactor Replacement Procedure Cleaning ProcedureFAN Motor and Blade Removal and Replacement Procedure FAN Motor and Blade Removal and ReplacementSCR/DIODE Rectifier Assembly Removal and Replacement Removal and Replacement SCR/DIODE Rectifier AssemblySCR Removal and Replacement SCR Removal and Replacement Figure F.21 1/2 Wide Leaf Spring Procedure for the 1/2 Inch Wide SpringClamping Procedure For 1/4-20 CAP Screws Clamping Procedure For 1/4-28 CAP ScrewsInch Wide Spring Procedure forAfter Replacing the SCRs Mounting of Stud Type Diodes To Aluminum Heat Sinks To Aluminum Heat Sinks Mounting of Stud Type DiodesMain Transformer Removal and Replacement Removal of Lift Bail Main Transformer Removal & ReplacementFigure F.26 Choke Removal Removal of Choke and TOP Iron AssemblyFigure F.27 Epoxy MIX Application Areas Reassembly of Transformer CoilsFigure F.28 Coil Lead Placement Figure F.30 Primary Thermostat Location Reassemble the Lift Bail Reassembling the Main Transformer Into the MachineWelding Output Load Test Retest After RepairInput Idle Amps and Watts Open Circuit VoltagesIdealarc CV-400 Section G Electrical DiagramsWiring Diagram Codes 10084, 10085 Wiring Diagram Code Control PC Board G2629-1 Layout Control PC Board G2629-1 Schematic Snubber Snubber PC Board M15370-3 Schematic Idealarc CV-400