Lincoln Electric SVM103-C service manual Generator Operation, General Information

Page 24

Return to Section TOC

Return to Section TOC

Return to Section TOC

Return to Section TOC

Return to Master TOC

Return to Master TOC

Return to Master TOC

Return to Master TOC

B-8

OPERATION

B-8

 

 

 

GENERATOR OPERATION

CAUTION

Be sure that any electrical equipment plugged into the generator’s AC power receptacles can with- stand a ±10% voltage and a ±5% frequency varia- tion. Some electronic devices cannot be powered by the POWER-ARC 4000. Refer to Table A.2,

ELECTRICAL DEVICE USE WITH THE POWER- ARC 4000, in the INSTALLATION section of this manual.

GENERAL INFORMATION

The POWER-ARC 4000 generator is rated at 4000 continuous watts (4400 surge watts). It provides both 120 volt and 240 volt power. You can draw up to 20 amps from either side of the 120 volt duplex recepta- cle, but no more than 37 amps from both sides at once. Up to 18 amps can be drawn from the single 240 volt receptacle.

Electrical loads in watts are calculated by multiplying the voltage rating of the load by the number of amps it draws. (This information is given on the load device nameplate.) For example, a device rated 115 volts, 2 amps will need 230 watts of power (115 x 2 = 230).

You can use Table B.3, GENERATOR POWER APPLI- CATIONS, to determine the wattage requirements of the most common types of loads you can power with the POWER-ARC 4000. Be sure to read the notes at the bottom of the table.

TO USE THE GENERATOR AS AN

AUXILIARY POWER SUPPLY:

1.Start the gasoline engine. See ENGINE OPERA- TION in this section of the manual.

2.Set the current control dial on the output control panel to “GENERATOR.” See Figure B.1.

3.Plug the load(s) into the appropriate 120 volt or 240 volt power receptacle.

NOTE: During welding, the maximum generator out- put for auxiliary loads is 100 watts.

NOTE: You can supply multiple loads as long as the total load does not exceed 4,000 watts. Be sure to start the largest loads first.

POWER-ARC 4000

Image 24
Contents POWER-ARC Safety Depends on YouSafety California Proposition 65 WarningsElectric Shock can kill Welding Sparks can cause fire or explosion Précautions DE Sûreté Master Table of Contents for ALL Sections Table of Contents Installation Section Installation Technical Specifications POWER-ARCSafety Precautions Location and VentilationStoring PRE-OPERATION Engine Service Spark Arrester Cert. Kool BoreElectrical Output Connections Welding Cable ConnectionsCable Size for 125 ampAuxiliary Power Receptacles Machine GroundingPlugs and HAND-HELD Equipment Premises Wiring Circuit BreakersThese Devices Without POWER-ARC Table of Contents Operation Section Safety Instructions OperationOperating Instructions General DescriptionOperational Features and Controls Design Features AdvantagesRecommended Applications Welding CapabilityControls and Settings GENERATOR/WELDER Controls Gasoline Engine Controls 20 AMP, 120 Volt Duplex ReceptacleEngine Operation Before Starting the EngineStarting the Engine For a HOT Engine To USE the Generator AS AN Auxiliary Power Supply Generator OperationGeneral Information Table B.1 Generator Power Applications Suggested Power Applications Running Watts Start-up WattsWelding Operation Welding Guidelines Table B.2 Welding APPLICATIONS/ELECTRODE Selection GuideOperation What Happens in the Arc? Correct Welding Position Correct Arc Length Practice Use the followingDo the following Butt WeldsFillet Welds PenetrationVertical-Up Welding Vertical-Down WeldingOverhead Welding Hardfacing To Reduce WearWelding Sheet Metal Welding Cast Iron Cast Iron Plate PreparationHigh-Speed Group AWS E6013 Out-of-Position Group AWS E6011Low Hydrogen Group Stable-Arc E7018 Table of Contents Accessories Section Accessories OPTIONS/ACCESSORIESLincoln Electric Accessories Table of Contents Maintenance Section Maintenance Routine and Periodic MaintenanceEngine Maintenance Engine AdjustmentsFigure D.2 Clean Rotating SCREEN/FINGER GUARD/DEBRIS Guard Table D.1 Engine Maintenance Schedule GENERATOR/WELDER Maintenance Do not attempt to polish slip rings while engine is runningFigure D.6. Major Component Locations Table of Contents Theory of Operation Section Theory of Operation ENGINE, EXCITATION, Rotor and StatorRotor Field Feedback and Auxiliary Power Figure E.3 Field Excitation and Auxiliary PowerAuxiliary Power Overcurrent Protection Weld Winding and ReactorTable of Contents Troubleshooting & Repair Section Troubleshooting & Repair HOW to USE Troubleshooting GuideTroubleshooting Output ProblemsOr contact your local Lincoln Electric Authorized Field SerVice Facility Field Service Facility Local Lincoln Electric AuthorizedTroubleshooting Rotor Resistance Test Engine Problems Troubleshooting Engine Throttle Adjustment This procedure takes approximately 15 minutes to perform Rotor Voltage TestTest Description Materials NeededTest Procedure Rotor Voltage TestThis procedure takes approximately 25 minutes to perform Rotor Resistance TestRotor Resistance Test Figure F.3 Brushes Retained with Cable TIE Engine Throttle Adjustment Test This procedure takes approximately 20 minutes to performStrobe-tach Method Frequency Counter MethodOscilloscope Method Wing NUT High Speed Stop Screw Scope Settings Normal Open Circuit Weld Voltage WaveformHigh Idle no Load Normal Open Circuit Voltage Waveform 115 VAC Supply Typical Weld Output Waveform Machine LoadedMachine Loaded to 125 Amps AT 23 VAC Brush Removal and Replacement DescriptionBrush Removal and Replacement ProcedureProcedure Rheostat Removal and Replacement Figure F.7 Rheostat Removal Capacitor AND/OR Diode Bridge Removal and Replacement This procedure takes approximately 35 minutes to performProcedure Capacitor Removal and REPLACE- Ment Figure F.8 Location and Discharging the Field CapacitorProcedure Field Diode Bridge Removal and Replacement Figure F.8A Field Diode Bridge LocationSTATOR/ROTOR Removal and Replacement This procedure takes approximately 3 hours to performInstructions STATOR/ROTOR Removal and Replacement Troubleshooting & Repair Rotor Removal Procedure Figure F.12 Checking ROTOR-STATOR AIR GAP Auxiliary Power Receptacle OUTPUT1 Retest After RepairEngine Output WELDER/GENERATOR OUTPUT1Return to Section TOC Table of Contents Diagrams Section Diagrams Wiring Diagram Power ARCDIAGRAMSG-3 DIAGRAMSG-4 Dimension Print Power ARC Return to Section TOC SVM Error Reporting Form