Lincoln Electric SVM103-C service manual Welding Sparks can cause fire or explosion

Page 4

iii

 

SAFETY

 

iii

 

 

 

 

Return to Master TOC

Return to Master TOC

Return to Master TOC

WELDING SPARKS can cause fire or explosion.

6.a. Remove fire hazards from the welding area. If this is not possible, cover them to prevent the welding sparks from starting a fire. Remember that welding sparks and hot

materials from welding can easily go through small cracks and openings to adjacent areas. Avoid welding near hydraulic lines. Have a fire extinguisher readily available.

6.b. Where compressed gases are to be used at the job site, special precautions should be used to prevent hazardous situations. Refer to “Safety in Welding and Cutting” (ANSI Standard Z49.1) and the operating information for the equipment being used.

6.c. When not welding, make certain no part of the electrode circuit is touching the work or ground. Accidental contact can cause overheating and create a fire hazard.

6.d. Do not heat, cut or weld tanks, drums or containers until the proper steps have been taken to insure that such procedures will not cause flammable or toxic vapors from substances inside. They can cause an explosion even though they have been “cleaned”. For information, purchase “Recommended Safe Practices for the Preparation for Welding and Cutting of Containers and Piping That Have Held Hazardous Substances”, AWS F4.1 from the American Welding Society (see address above).

6.e. Vent hollow castings or containers before heating, cutting or welding. They may explode.

6.f. Sparks and spatter are thrown from the welding arc. Wear oil free protective garments such as leather gloves, heavy shirt, cuffless trousers, high shoes and a cap over your hair. Wear ear plugs when welding out of position or in confined places. Always wear safety glasses with side shields when in a welding area.

6.g. Connect the work cable to the work as close to the welding area as practical. Work cables connected to the building framework or other locations away from the welding area increase the possibility of the welding current passing through lifting chains, crane cables or other alternate cir- cuits. This can create fire hazards or overheat lifting chains or cables until they fail.

6.h. Also see item 1.c.

CYLINDER may explode if damaged.

7.a. Use only compressed gas cylinders

containing the correct shielding gas for the process used and properly operating regulators designed for the gas and

pressure used. All hoses, fittings, etc. should be suitable for the application and maintained in good condition.

7.b. Always keep cylinders in an upright position securely chained to an undercarriage or fixed support.

7.c. Cylinders should be located:

Away from areas where they may be struck or subjected to physical damage.

A safe distance from arc welding or cutting operations and any other source of heat, sparks, or flame.

7.d. Never allow the electrode, electrode holder or any other electrically “hot” parts to touch a cylinder.

7.e. Keep your head and face away from the cylinder valve outlet when opening the cylinder valve.

7.f. Valve protection caps should always be in place and hand tight except when the cylinder is in use or connected for use.

7.g. Read and follow the instructions on compressed gas cylinders, associated equipment, and CGA publication P-l, “Precautions for Safe Handling of Compressed Gases in Cylinders,” available from the Compressed Gas Association 1235 Jefferson Davis Highway, Arlington, VA 22202.

FOR ELECTRICALLY powered equipment.

8.a. Turn off input power using the disconnect switch at the fuse box before working on the equipment.

8.b. Install equipment in accordance with the U.S. National Electrical Code, all local codes and the manufacturer’s recommendations.

8.c. Ground the equipment in accordance with the U.S. National Electrical Code and the manufacturer’s recommendations.

Return to Master TOC

Mar ‘95

Image 4
Contents POWER-ARC Safety Depends on YouSafety California Proposition 65 WarningsElectric Shock can kill Welding Sparks can cause fire or explosion Précautions DE Sûreté Master Table of Contents for ALL Sections Table of Contents Installation Section Installation Technical Specifications POWER-ARCLocation and Ventilation Safety PrecautionsStoring PRE-OPERATION Engine Service Spark Arrester Cert. Kool BoreElectrical Output Connections Welding Cable ConnectionsCable Size for 125 ampMachine Grounding Auxiliary Power ReceptaclesPlugs and HAND-HELD Equipment Premises Wiring Circuit BreakersThese Devices Without POWER-ARC Table of Contents Operation Section Safety Instructions OperationOperating Instructions General DescriptionOperational Features and Controls Design Features AdvantagesRecommended Applications Welding CapabilityControls and Settings GENERATOR/WELDER ControlsGasoline Engine Controls 20 AMP, 120 Volt Duplex ReceptacleBefore Starting the Engine Engine OperationStarting the Engine For a HOT Engine Generator Operation To USE the Generator AS AN Auxiliary Power SupplyGeneral Information Table B.1 Generator Power Applications Suggested Power Applications Running Watts Start-up WattsWelding Operation Welding Guidelines Table B.2 Welding APPLICATIONS/ELECTRODE Selection GuideOperation What Happens in the Arc? Correct Welding Position Correct Arc Length Practice Use the followingDo the following Butt WeldsFillet Welds PenetrationVertical-Up Welding Vertical-Down WeldingHardfacing To Reduce Wear Overhead WeldingWelding Sheet Metal Welding Cast Iron Cast Iron Plate PreparationOut-of-Position Group AWS E6011 High-Speed Group AWS E6013Low Hydrogen Group Stable-Arc E7018 Table of Contents Accessories Section OPTIONS/ACCESSORIES AccessoriesLincoln Electric Accessories Table of Contents Maintenance Section Maintenance Routine and Periodic MaintenanceEngine Maintenance Engine AdjustmentsFigure D.2 Clean Rotating SCREEN/FINGER GUARD/DEBRIS Guard Table D.1 Engine Maintenance Schedule GENERATOR/WELDER Maintenance Do not attempt to polish slip rings while engine is runningFigure D.6. Major Component Locations Table of Contents Theory of Operation Section Theory of Operation ENGINE, EXCITATION, Rotor and StatorRotor Field Feedback and Auxiliary Power Figure E.3 Field Excitation and Auxiliary PowerAuxiliary Power Overcurrent Protection Weld Winding and ReactorTable of Contents Troubleshooting & Repair Section Troubleshooting & Repair HOW to USE Troubleshooting GuideTroubleshooting Output ProblemsElectric Authorized Field Ser Or contact your local LincolnVice Facility Field Service Facility Local Lincoln Electric AuthorizedTroubleshooting Rotor Resistance Test Engine Problems Troubleshooting Engine Throttle Adjustment This procedure takes approximately 15 minutes to perform Rotor Voltage TestTest Description Materials NeededTest Procedure Rotor Voltage TestThis procedure takes approximately 25 minutes to perform Rotor Resistance TestRotor Resistance Test Figure F.3 Brushes Retained with Cable TIE Engine Throttle Adjustment Test This procedure takes approximately 20 minutes to performFrequency Counter Method Strobe-tach MethodOscilloscope Method Wing NUT High Speed Stop Screw Normal Open Circuit Weld Voltage Waveform Scope SettingsHigh Idle no Load Normal Open Circuit Voltage Waveform 115 VAC Supply Machine Loaded Typical Weld Output WaveformMachine Loaded to 125 Amps AT 23 VAC Brush Removal and Replacement DescriptionBrush Removal and Replacement ProcedureProcedure Rheostat Removal and Replacement Figure F.7 Rheostat Removal Capacitor AND/OR Diode Bridge Removal and Replacement This procedure takes approximately 35 minutes to performProcedure Capacitor Removal and REPLACE- Ment Figure F.8 Location and Discharging the Field CapacitorProcedure Field Diode Bridge Removal and Replacement Figure F.8A Field Diode Bridge LocationThis procedure takes approximately 3 hours to perform STATOR/ROTOR Removal and ReplacementInstructions STATOR/ROTOR Removal and Replacement Troubleshooting & Repair Rotor Removal Procedure Figure F.12 Checking ROTOR-STATOR AIR GAP Auxiliary Power Receptacle OUTPUT1 Retest After RepairEngine Output WELDER/GENERATOR OUTPUT1Return to Section TOC Table of Contents Diagrams Section Diagrams Wiring Diagram Power ARCDIAGRAMSG-3 DIAGRAMSG-4 Dimension Print Power ARC Return to Section TOC SVM Error Reporting Form