Lincoln Electric SVM103-C service manual Premises Wiring, Circuit Breakers

Page 14

A-8

INSTALLATION

A-8

 

 

 

Return to Section TOC

Return to Section TOC

Return to Section TOC

Return to Section TOC

Return to Master TOC

Return to Master TOC

Return to Master TOC

Return to Master TOC

PREMISES WIRING

The POWER-ARC 4000 three-wire, grounded neutral generator allows it to be connected to premises wiring. However, the wiring procedure needed to meet the National Electric Code (NEC) regulations as well as city ordinances can be confusing. The con- nections could vary from a “commonly grounded” to a “separately derived” system depending on whether you want the unit to be “hardwired” to the premises or only connected temporarily.

WARNING

Only a licensed, certified, trained electrician should install the machine to a premises or residential electrical system. Be certain that:

The premises is isolated and no feedbacking into the utility system can occur. Certain state and local laws require the premises to be isolat- ed before the generator is linked to the premis- es. Check your state and local requirements.

A double pole, double throw transfer switch in conjunction with the properly rated double throw circuit breaker is connected between the generator power and the utility meter.

The POWER-ARC 4000 does not have a combined 120/240 volt twist-lock receptacle and cannot be connected to a premises as described in other Lincoln literature.

Remember that the POWER-ARC 4000 is intended only for backup, intermittent use. The gasoline engine has a rated life of 500 hours. It cannot with- stand long-term use without proper maintenance. See the MAINTENANCE section of this manual and the engine owner’s manual for more information.

Certain electrical devices cannot be powered by the POWER-ARC 4000. Refer to Table A.2 for these devices.

CIRCUIT BREAKERS

The POWER-ARC 4000 has its own 20 amp circuit breakers for overload protection. When the machine is

operated in high temperature environments, the breakers may tend to trip at lower loads than normally.

CAUTION

Never bypass the circuit breakers. Without overload protection, the power-arc 4000 could overheat and/or cause damage to the equipment being used.

POWER-ARC 4000

Image 14
Contents POWER-ARC Safety Depends on YouSafety California Proposition 65 WarningsElectric Shock can kill Welding Sparks can cause fire or explosion Précautions DE Sûreté Master Table of Contents for ALL Sections Table of Contents Installation Section Installation Technical Specifications POWER-ARCStoring Safety PrecautionsLocation and Ventilation PRE-OPERATION Engine Service Spark Arrester Cert. Kool BoreCable Size for Electrical Output ConnectionsWelding Cable Connections 125 ampPlugs and HAND-HELD Equipment Auxiliary Power ReceptaclesMachine Grounding Premises Wiring Circuit BreakersThese Devices Without POWER-ARC Table of Contents Operation Section Operating Instructions Safety InstructionsOperation General DescriptionRecommended Applications Operational Features and ControlsDesign Features Advantages Welding CapabilityControls and Settings GENERATOR/WELDER ControlsGasoline Engine Controls 20 AMP, 120 Volt Duplex ReceptacleStarting the Engine Engine OperationBefore Starting the Engine For a HOT Engine General Information To USE the Generator AS AN Auxiliary Power SupplyGenerator Operation Table B.1 Generator Power Applications Suggested Power Applications Running Watts Start-up WattsWelding Operation Welding Guidelines Table B.2 Welding APPLICATIONS/ELECTRODE Selection GuideOperation What Happens in the Arc? Correct Welding Position Correct Arc Length Do the following PracticeUse the following Butt WeldsFillet Welds PenetrationVertical-Up Welding Vertical-Down WeldingWelding Sheet Metal Overhead WeldingHardfacing To Reduce Wear Welding Cast Iron Cast Iron Plate PreparationLow Hydrogen Group Stable-Arc E7018 High-Speed Group AWS E6013Out-of-Position Group AWS E6011 Table of Contents Accessories Section Lincoln Electric Accessories AccessoriesOPTIONS/ACCESSORIES Table of Contents Maintenance Section Engine Maintenance MaintenanceRoutine and Periodic Maintenance Engine AdjustmentsFigure D.2 Clean Rotating SCREEN/FINGER GUARD/DEBRIS Guard Table D.1 Engine Maintenance Schedule GENERATOR/WELDER Maintenance Do not attempt to polish slip rings while engine is runningFigure D.6. Major Component Locations Table of Contents Theory of Operation Section Theory of Operation ENGINE, EXCITATION, Rotor and StatorRotor Field Feedback and Auxiliary Power Figure E.3 Field Excitation and Auxiliary PowerAuxiliary Power Overcurrent Protection Weld Winding and ReactorTable of Contents Troubleshooting & Repair Section Troubleshooting & Repair HOW to USE Troubleshooting GuideTroubleshooting Output ProblemsVice Facility Or contact your local LincolnElectric Authorized Field Ser Field Service Facility Local Lincoln Electric AuthorizedTroubleshooting Rotor Resistance Test Engine Problems Troubleshooting Engine Throttle Adjustment Test Description This procedure takes approximately 15 minutes to performRotor Voltage Test Materials NeededTest Procedure Rotor Voltage TestThis procedure takes approximately 25 minutes to perform Rotor Resistance TestRotor Resistance Test Figure F.3 Brushes Retained with Cable TIE Engine Throttle Adjustment Test This procedure takes approximately 20 minutes to performOscilloscope Method Strobe-tach MethodFrequency Counter Method Wing NUT High Speed Stop Screw High Idle no Load Scope SettingsNormal Open Circuit Weld Voltage Waveform Normal Open Circuit Voltage Waveform 115 VAC Supply Machine Loaded to 125 Amps AT 23 VAC Typical Weld Output WaveformMachine Loaded Brush Removal and Replacement DescriptionBrush Removal and Replacement ProcedureProcedure Rheostat Removal and Replacement Figure F.7 Rheostat Removal Capacitor AND/OR Diode Bridge Removal and Replacement This procedure takes approximately 35 minutes to performProcedure Capacitor Removal and REPLACE- Ment Figure F.8 Location and Discharging the Field CapacitorProcedure Field Diode Bridge Removal and Replacement Figure F.8A Field Diode Bridge LocationInstructions STATOR/ROTOR Removal and ReplacementThis procedure takes approximately 3 hours to perform STATOR/ROTOR Removal and Replacement Troubleshooting & Repair Rotor Removal Procedure Figure F.12 Checking ROTOR-STATOR AIR GAP Engine Output Auxiliary Power Receptacle OUTPUT1Retest After Repair WELDER/GENERATOR OUTPUT1Return to Section TOC Table of Contents Diagrams Section Diagrams Wiring Diagram Power ARCDIAGRAMSG-3 DIAGRAMSG-4 Dimension Print Power ARC Return to Section TOC SVM Error Reporting Form