Friedrich 2008, 2009 Touch Test in Heating/Cooling Cycle, Procedure For Changing Reversing Valve

Page 36

Touch Test in Heating/Cooling Cycle

WARNING

BURN HAZARD

Certain unit components operate at temperatures hot enough to cause burns.

Proper safety procedures must be followed, and proper protective clothing must be worn.

Failure to follow these procedures could result in minor to moderate injury.

The only definite indications that the slide is in the mid- position is if all three tubes on the suction side of the valve are hot after a few minutes of running time.

NOTE: A condition other than those illustrated above, and on Page 31, indicate that the reversing valve is not shifting properly. Both tubes shown as hot or cool must be the same corresponding temperature.

Procedure For Changing Reversing Valve

WARNING

HIGH PRESSURE HAZARD

Sealed Refrigeration System contains refrigerant and oil under high pressure.

Proper safety procedures must be followed, and proper protective clothing must be worn when working with refrigerants.

Failure to follow these procedures could result in serious injury or death.

NOTICE

FIRE HAZARD

The use of a torch requires extreme care and proper judgment. Follow all safety recommended precautions and protect surrounding areas with fire proof materials. Have a fire extinguisher readily available. Failure to follow this notice could result in moderate to serious property damage.

1.Install Process Tubes. Recover refrigerant from sealed system. PROPER HANDLING OF RECOVERED REFRIGERANT ACCORDING TO EPA REGULATIONS IS REQUIRED.

2.Remove solenoid coil from reversing valve. If coil is to be reused, protect from heat while changing valve.

3.Unbraze all lines from reversing valve.

4.Clean all excess braze from all tubing so that they will slip into fittings on new valve.

5.Remove solenoid coil from new valve.

6.Protect new valve body from heat while brazing with plastic heat sink (Thermo Trap) or wrap valve body with wet rag.

7.Fit all lines into new valve and braze lines into new valve.

WARNING

EXPLOSION HAZARD

The use of nitrogen requires a pressure regulator. Follow all safety procedures and wear protective safety clothing etc.

Failure to follow proper safety procedures could result in serious injury or death.

8.Pressurize sealed system with a combination of R-22 and nitrogen and check for leaks, using a suitable leak detector. Recover refrigerant per EPA guidelines.

9.Once the sealed system is leak free, install solenoid coil on new valve and charge the sealed system by weighing in the proper amount and type of refrigerant as shown on rating plate. Crimp the process tubes and solder the ends shut. Do not leave Schrader or piercing valves in the sealed system.

NOTE: When brazing a reversing valve into the system, it is of extreme importance that the temperature of the valve does not exceed 250°F at any time.

Wrap the reversing valve with a large rag saturated with water. “Re-wet” the rag and thoroughly cool the valve after each brazing operation of the four joints involved.

The wet rag around the reversing valve will eliminate conduction of heat to the valve body when brazing the line connection.

34

Image 36
Contents Room Air Conditioners Technical Support Contact Information Table Of Contents Important Safety Information Your safety and the safety of others are very importantRefrigeration System Hazards Property Damage Hazards Introduction Typical Unit Components1st Digit Function 2nd Digit7th Digit Options 0 = Straight Cool & Heat Pump Models 6th Digit Voltage 1 = 115 VoltsChassis Specifications for 2009, 2008 models Installation information / sleeve dimensions Performance Data for 2009, 2008 models Electric Shock Hazard Fire HazardMake sure the wiring is adequate for your unit To adjust temperature 60F 16C to 90F 32C To start unitHow to use the remote control* QuietMaster Programmable How to operate the Friedrich room air conditioner XQ models How to use the remote control XQ models How to operate the Friedrich room air conditioner Testing the Electronic Control Boards for QME & XQ Models Checking Room TemperatureActivating Test Mode Testing the Electronic Control Error Code Listings Testing the Rotary Control Switches KS, KM, SL Models See FigureEQ08 System Control Switch Test Functional Component DefinitionsMechanical Components Electrical ComponentsComponents Testing Thermostat AdjustmentTest Thermostat Bulb LocationResistor Heat Anticipator See Figure Defrost Thermostat Heat Pump Models OnlyDefrost Bulb Location Heat Pump Models Capacitors Capacitor Check with Capacitor AnalyzerCapacitor Connections FAN MotorTesting the Heating Element Electric Shock Hazard Heating Element See FigureHeating Element Heat Pump Models Drain PAN ValveOperating Sequence / Characteristics and Features Smart FANRefrigeration Sequence of Operation Sealed Refrigeration System Repairs Equipment RequiredEquipment Must be Capable Risk of Electric ShockMethod Of Charging / Repairs Burn HazardFreeze Hazard Undercharged Refrigerant Systems Overcharged Refrigerant SystemsRestricted Refrigerant System Hermetic Components Check Metering DeviceCheck Valve Capillary Tube SystemsReversing Valve DESCRIPTION/OPERATION Testing the Coil Checking the Reversing ValveProcedure For Changing Reversing Valve Touch Test in Heating/Cooling CycleExplosion Hazard Compressor Checks Single Phase Resistance Test Ground TestChecking Compressor Efficiency Compressor Replacement Recommended procedure for compressor replacementHigh Temperatures Rotary Compressor Special Troubleshooting and Service Routine Maintenance Coils and Base PAN Excessive Weight HazardBlower Wheel / Housing / Condenser FAN / Shroud AIR FilterSleeve / Drain Front CoverCooling only Room AIR Conditioners Troubleshooting Tips Problem Possible Cause ActionReplace fuse, reset breaker. If repeats, check Fused separately Problem Possible Cause Action Heat / Cool only Room AIR Conditioners Troubleshooting Tips Heat / Cool Room AIR Conditioners Trouble Shooting Tips Problem Possible Cause ActionSystem Cools When Heating is Desired Heat PumpYES Normal Function of Valve Malfunction of ValveElectronic Control Cool only Models Electronic Control Cool only Models Electromechanical Control Cool only Models SL28L30-D,-E SL36L30A-D,A-E Page Electromechanical Control Cool with Electric Heat Models EL36L35A-D,A-E Electromechanical Control Heat Pump only Models YS13L33-D,-E YM18L34-D,-E YL24L35-E,-F Aham PUB. NO. RAC-1 Cooling Load Estimate Form Heat Gain from Quantity FactorsDAY Following is an example using the heat load form Heat Load FormWindows & Doors Area, sq. ft Infiltration Windows & Doors AVGRoom AIR Conditioners Limited Warranty Page Technical Support Contact Information Friedrich AIR Conditioning CO
Related manuals
Manual 60 pages 54.38 Kb Manual 60 pages 45.7 Kb

2009, 2008 specifications

Friedrich 2008 and 2009 represent significant advancements in heating and cooling technology, particularly in the realm of air conditioning systems. Friedrich is known for producing robust and efficient HVAC solutions tailored for both residential and commercial applications. These models are particularly noteworthy for their innovative features and energy-efficient technologies that enhance user comfort and lower operational costs.

One of the main characteristics of the Friedrich 2008 and 2009 models is their emphasis on energy efficiency. Both units are designed to meet or exceed Energy Star standards, which indicates that they use less energy compared to standard models, contributing to greener living solutions. The incorporation of efficient compressors and high SEER (Seasonal Energy Efficiency Ratio) ratings ensures that users save money on their electricity bills while enjoying optimal cooling performance.

The units also feature advanced inverter technology, which allows for variable speed operation. This means that the system can adjust its cooling capacity based on the current temperature needs, resulting in more consistent comfort while reducing wear and tear on the equipment. Additionally, the inverter technology operates more quietly compared to traditional systems, making these models suitable for both home environments and commercial settings.

Friedrich 2008 and 2009 also provide users with enhanced control options. The inclusion of smart technology and Wi-Fi connectivity allows for remote monitoring and temperature adjustments via smartphones or tablets. Users can create schedules, set temperature preferences, and receive maintenance alerts, contributing to a more user-friendly experience.

Moreover, these models are designed with robust construction, featuring durable materials that withstand various weather conditions. Their compact footprint and sleek design make them suitable for window installation, while an array of sizes accommodates spaces of different dimensions.

Additionally, the air filtration systems in Friedrich 2008 and 2009 units improve indoor air quality. They effectively capture dust, allergens, and other particulates, ensuring a healthier environment for occupants.

In summary, Friedrich 2008 and 2009 models stand out for their energy efficiency, innovative inverter technology, smart controls, and robust construction. With a focus on user comfort and environmental responsibility, these models provide reliable solutions for effective heating and cooling in diverse applications.