Goodman Mfg VC8 instruction manual Switch Bank S4

Page 27

START-UP PROCEDURE AND ADJUSTMENT

The cooling system manufacturer’s instructions must be checked for required air flow. Any electronic air cleaners or other devices may require specific air flows, consult installa- tion instructions of those devices for requirements.

3.Knowing the furnace model, locate the high stage cooling air flow charts in the Specification Sheet applicable to your model. Look up the cooling air flow determined in step 2 and find the required cooling speed and adjustment setting.

Example: A *MVC80704BX furnace installed with a 2.5 ton air conditioning system. The air flow needed is 1000 CFM. Looking at the cooling speed chart for *MVC80704BX, find the air flow closest to 1000 CFM. A cooling airflow of 990 CFM can be attained by setting the cooling speed to “C” and the adjustment to “-” (minus).

4.Continuous fan speed is 30% of the furnace’s maximum airflow capability.

Example: If the furnace’s maximum airflow capability is 2000 CFM, the continuous fan speed will be 0.30 x 2000 CFM = 600 CFM.

5.Locate the blower speed selection DIP switches on the integrated control module. Select the desired “cooling” speed tap by positioning switches 1 and 2 appropriately. Select the desired “adjust” tap by positioning switches 3 and 4 appropriately. Refer to the following figure for switch positions and their corresponding taps. Verify CFM by noting the number displayed on the dual 7- segment LED display.

6.The multi-speed circulator blower also offers several custom ON/OFF ramping profiles. These profiles may be used to enhance cooling performance and increase comfort level. The ramping profiles are selected using DIP switches 5 and 6. Refer to the following figure for switch positions and their corresponding taps. Refer to the bullet points below for a description of each ramping profile. Verify CFM by noting the number displayed on the dual 7-segment LED display.

Switch Bank: S4

Ramping

DIP Switch No.

Profiles

5

6

 

 

 

A*

OFF

OFF

B

ON

OFF

C

OFF

ON

D

ON

ON

(*Indicates factory setting)

Profile A provides only an OFF delay of one (1) minute at 100% of the cooling demand airflow.

 

 

100% CFM

 

 

 

100% CFM

 

 

OFF

 

 

 

OFF

 

 

 

 

 

 

1 min

Profile B ramps up to full cooling demand airflow by first stepping up to 50% of the full demand for 30 seconds. The motor then ramps to 100% of the required airflow. A one (1) minute OFF delay at 100% of the cooling airflow is provided.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100% CFM

 

 

 

100% CFM

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OFF

 

 

50% CFM

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OFF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1/2 min

 

 

 

 

 

 

 

 

 

 

 

 

 

1 min

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Profile C ramps up to 85% of the full cooling demand airflow and operates there for approximately 7 1/2 minutes. The motor then steps up to the full demand airflow. Profile C also has a one (1) minute 100% OFF delay.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OFF

 

 

 

 

 

 

 

 

 

 

100% CFM

 

 

 

 

 

 

OFF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Switch Bank: S3

Cooling

DIP Switch No.

 

Airflow

1

2

 

A

OFF

OFF

 

B

ON

OFF

 

C

OFF

ON

 

D*

ON

ON

 

(*Indicates factory setting)

 

 

 

 

Switch Bank: S3

 

 

Adjust Taps

DIP Switch No.

 

3

4

 

 

 

Normal*

OFF

OFF

 

10%

ON

OFF

 

-10%

OFF

ON

 

Normal

ON

ON

 

(*Indicates factory setting)

Profile D ramps up to 50% of the demand for 1/2 minute, then ramps to 85% of the full cooling demand airflow and operates there for approximately 7 1/2 minutes. The motor then steps up to the full demand airflow. Profile D has a 1/2 minute at 50% airflow OFF delay.

OFF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OFF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

27

Image 27
Contents Installation Instructions for *D, MVC8 GAS Furnace Upright Installations Table of Contents What to do if YOU Smell GAS Safety PrecautionsKeep this literature in a safe place for future reference Product ApplicationProduct Description Location Requirements and ConsiderationsNational Fire Protection Association, Inc CSA InternationalClearances and Accessibility Combustion & Ventilation Category Following vent testing procedure is reproduced fromCategory I Venting Vertical Venting Exterior Masonry Chimneys Category I Furnaces onlyExteriormasonrychimneyscategoryifurnacesonly Proper Chimney Termination? Check Check 3 Chimney Crown Condition Electrical Connections High Voltage Important Note Single Stage Heating with Single Stage Cooling Thermostat Wiring DiagramsGAS Supply and Piping Accessories WiringGas Altitude Kit Orifice Manifold Pressure Circulating AIR and FiltersGeneral Furnace Layout Propane Gas Installation Typ Checking Static Pressure 80% Furnace Shown, 90% Similar START-UP Procedure and AdjustmentUpright Installations Honeywell Model VR9205 Two-Stage White-Rodgers Model 36G54 Two-StageHoneywell Model VR9205 Connected to Manometer White-Rodgers Model 36G54 Connected to ManometerMeasuring Inlet Gas Pressure Alt. Method Example Temperature Rise MeasurementSwitch Bank S4 Heat Off Delay Dipswitches Switch Bank S4Comfortnet System Comfortnet SystemCTK01AA System Wiring using Four-WiresTo step to the next item Configuration Cool Airflow CL CFM Normal Sequence of Operation Operational Checks & Safety Circuit DescriptionOperational Checks Troubleshooting & Maintenance Safety Circuit DescriptionTroubleshooting Miscellaneous MaintenanceRepair and Replacement Parts Before Leaving AN InstallationInternal Troubleshooting ChartLimit Message ChartInvalid Trips Status Codes AIR Flow Data DIP SwitchesRD WH MVC8AA Wiring DiagramMVC8AB, *DVC8AA Wiring Diagram

VC8 specifications

Goodman Manufacturing has established itself as a leading provider of quality heating, ventilation, and air conditioning (HVAC) systems. Among its impressive lineup is the Goodman VC8, a versatile and efficient variable-capacity air conditioner that stands out due to its innovative design and advanced technologies.

The Goodman VC8 is known for its superior energy efficiency, featuring a SEER (Seasonal Energy Efficiency Ratio) rating higher than 20. This means that it operates efficiently across various climatic conditions, ensuring optimal cooling with minimal energy consumption. The high SEER rating not only translates to lower energy bills but also contributes to a reduced environmental footprint, making it a smart choice for eco-conscious consumers.

One of the standout features of the VC8 is its variable-speed compressor, which allows the system to adjust its output based on the cooling needs of the space. This technology enables the unit to run at lower speeds for longer periods, maintaining a consistent temperature while reducing energy usage. The variable-speed operation also contributes to quieter operation compared to traditional air conditioning systems. Homeowners can enjoy a peaceful indoor environment without the disruptive noise commonly associated with air conditioning units.

In terms of comfort, the Goodman VC8 employs advanced humidity control features, ensuring that moisture is efficiently managed within the space. This not only enhances comfort levels but also helps to prevent issues related to excessive humidity, such as mold growth and structural damage.

The VC8 is designed for reliable performance and durability, with its robust construction and dependable components. Goodman manufactures its products with high-quality materials to withstand the rigors of daily use and various weather conditions, ensuring long-lasting operation.

Additionally, the VC8 incorporates smart technology features, including compatibility with Wi-Fi-enabled thermostats. Homeowners can easily monitor and control their system remotely, providing convenience and peace of mind.

The Goodman VC8 is an exemplary solution for those looking for an energy-efficient, advanced air conditioning system. With its variable-speed compressor, excellent humidity control, durable construction, and smart features, it promises comfort and reliability suitable for any residential space. By choosing Goodman, homeowners can invest in a quality HVAC system designed to meet modern needs and preferences.