Trane SCXG-SVX01B-EN manual Refrigerant Piping Air-Cooled Units Only, Brazing Procedures

Page 32

Mechanical Specifications

Refrigerant Piping (Air-Cooled Units Only)

See the “Startup” section of this manual for instructions on refrigerant evacuation, charging, and superheat measurement.

Leak-test the entire refrigeration system after all piping is complete.

LeakTest (RemoteAir-cooled Units Only) Units ship with a holding charge of dry nitrogen. Before installing the unit refrigerant piping, momentarily depress either the suction or discharge line access valve to verify the holding charge has not been lost. If no nitrogen escapes the access valve, leak-test the entire refrigerant system to determine the leak source. Use a halogen leak detector, a halide torch, or soap bubbles to leak test. After finding a leak, remove the test pressure and repair the leak. Retest the unit to ensure all leaks are repaired.

Brazing Procedures

Proper brazing techniques are essential when installing refrigerant piping. The following factors should be kept in mind when forming sweat connections:

￿WARNING

Hazard of Explosion and Deadly

Gases

Never solder, braze or weld on refriger- ant lines or any unit components that are above atmospheric pressure or where refrigerant may be present.Always remove refrigerant by following the guidelines established by the EPA Federal Clean Air Act or other state or local codes as appropriate.After refrigerant removal, use dry nitrogen to bring system back to atmospheric pressure before opening system for repairs. Mixtures of refrigerants and air under pressure may become combustible in the presence of an ignition source leading to an explosion. Excessive heat from soldering, brazing or welding with refrigerant vapors present can form highly toxic gases and extremely corrosive acids. Failure to follow all proper safe refrigerant handling practices could result in death or serious injury.

1.When heating copper in the presence of air, copper oxide forms.To prevent copper oxide from forming inside the tubing during brazing, sweep an inert gas, such as dry nitrogen, through the tubing. A nitrogen flow of 6 to 10 cubic feet per hour is sufficient to displace the air in the tubing and prevent oxidation of the interior surfaces. Use a pressure regulating valve or flow meter to control the flow.

2.Ensure that the tubing surfaces requiring brazing are clean, and that the tube ends are carefully reamed to remove any burrs.

3.Make sure the inner and outer tubes of the joint are symmetrical and have a close clearance, providing an easy ‘slip’ fit. If the joint is too loose, the connection’s tensile strength is significantly reduced. Ensure the overlap distance is equal to the inner tube diameter.

4.Wrap each refrigerant line component with a wet cloth to keep it cool during brazing. Excessive heat can damage the internal components.

5.If using flux, apply it sparingly to the joint. Excess flux will contaminate the refrigerant system.

6.Apply heat evenly over the length and circumference of the joint.

7.Begin brazing when the joint is hot enough to melt the brazing rod. The hot copper tubing, not the flame, should melt the rod.

8.Continue to apply heat evenly around the joint circumference until the brazing material is drawn into the joint by capillary action, making a mechanically sound and gas-tight connection.

9.Visually inspect the connection after brazing to locate any pinholes or crevices in the joint. Use a mirror if joint locations are difficult to see.

10.ReferenceTables M-MP-6 and M-MP-

7 for the correct amount of refrigerant required for charging the unit.

32

SCXG-SVX01B-EN

Image 32
Contents JO and later design sequence ModelsIntroduction Hazard IdentificationSpecial Note on Refrigeration Emissions HazardousVoltage w/CapacitorsContents Features and Benefits Refrigerant Handling ProceduresModular Series Self-Contained Unit Components Installation information Unit NameplateModel Number Description Scwg Model Number DescriptionDigit 31 Compressor ServiceValves Digit 22 Unit FinishDigit Digit 24 Unit ConnectionSelf-Contained Ship-WithAccessory Model Number Description Model Number Description PswgAfter-ShipmentAccessory Model Number Receiving and Handling Shipping PackageInstallation Preparation ServiceAccess Table I-PC-1. Service and code clearance requirementsSection TopView CCRC/CIRC 20, 29Rigging and Unit Handling Lifting Equipment CapacityUnit Handling Procedure Figure I-PC-7.Assembled modular unit proper riggingSplit-Apart Unit Assembly IntelliPak UnitsUCM OnlyRemove panels FML, FMM, and FMR Units with Thermostat OnlyFigure I-PC-9 How to assemble the split apart modular unit External Unit Isolation Pre-Installation ChecklistSkid Removal Dimensions WeightsSCWG/SIWG Dimensions, Left-side viewLeft-side View Right-side view Top view SCRG/SIRG Dimensions,SCRG/SIRGWeight, lbs Dimensions Weights Detail Dimensions,CCRC/CIRC Air-cooled condenser dimensions & weight, in-lbs CCRC/CIRC -Air-Cooled CondenserCCRC/CIRC Electrical connections, CCRC/CIRC Refrigerant connections,Hot water coil dimensions & weight, in-lbs Hot Water CoilSteam coil dimensions, in-lbs Steam CoilFlexible Horizontal Discharge Plenum Electric heat coil dimensions & weight, in-lbsElectric Heat Coil Waterside economizer weight, in-lbs Waterside EconomizerDetail a Detail B Airside economizer dimensions & weight, in-lbsAirside Economizer Dimensions Weights VFD Variable Frequency Drive Option VFDControl and LineVoltage Result in death or serious injury Mounting RequirementsVariable Frequency Drive with Bypass Electrical Installation ProcedureVFD with bypass dimensions, Mechanical Specifications Duct ConnectionsWater Piping Hazardous Voltage w/Capaci- torsWaterside Piping Arrangements Table I-MR-1. Water Connection SizesHazard of Explosion and Deadly Gases Brazing ProceduresRefrigerant Piping Air-Cooled Units Only Unit Wiring Diagrams Supply PowerWiringLive Electrical Components Equipment DamageSelection Procedures Installation requirements Pre-Startup ProceduresSupply Fan Isolators Shipping bracketFigure I-PR-3. Correct plenum insulation placement Airside Economizer Installation Unit InstallationField Wiring Connections Unit HandlingTransducer Location Static PressureTransducer Installation VAV units onlyInstalling theTransducer Waterside Economizer Installation Procedure Figure I-PR-7. Installing the waterside economizerTubing assemblies for waterside econo Mizer left-hand piping Waterside Economizer Ship-Separate Parts List Unit Structural Integrity Hydronic Coil InstallationInstallation Procedure Table I-PR-2.Available Electric Heat kW Electric Heat InstallationElectric Heat CoilWiring Procedure Standard with All IntelliPak Units Zone Sensor Options for IntelliPak Control UnitsCV Unit Zone Sensor Options BAYSENS077* DescriptionCV andVAV Unit Zone Sensor Options VAV Unit Zone Sensor OptionBAYSENS074 Description BAYSENS073 DescriptionZone Sensor Installation WiringMounting Location Mounting the SubbaseRight Mounting Directly to the Wall Mounting to Junction Box Programmable Zone Sensors ConstantVolume Zone Sensor BAYSENS019 DescriptionVariable AirVolume Zone Sensor BAYSENS020B Description Programmable Zone Sensor Installation Airflows from adjacent zones or other unitsTime Clock Installation Time Clock Installation ChecklistWiring theTimeclock Time Clock OptionRemote Human Interface Panel Installation Human Interface HI PanelRemote Human Interface Panel Location RecommendationsWall Mounting the RHI Panel ProcedureMounting the Remote Human Interface RHI Panel Pre-startup Wiring the Remote Human Interface LowVoltage AC FieldWiring ConnectionsCommunication Link ShieldedTwisted PairWiring Interprocessor Communication Bridge ModuleWiringConnecting toTracer Summit Pre-Startup ChecklistInstallation programming Programmable Zone Sensor OptionsHeat supply air Cool supply air Warmup temperature During Programming IndicatesKeypad Operation Temporary Manual Override Time ButtonKeypad Lockout Up and Down Button ArrowsTemporary Override Run Mode Figure I-P-6.Temporary manual override menu screenFigure I-P-7.Temporary manual override run mode screen Table I-P-1. Zone sensor BAYSENS019 option menu settingsRemote Panel Indicator Signals From UCM to ZSM Intelligent CopyTo use Intelligent Copy Off FlashingIcon Descriptions Figure I-P-9.BAYSENS019 complete icon displayFigure I-P-10.BAYSENS020 complete icon display Setting theTime Programming theTime Clock OptionProgramming To review and change programsInstallation startup Unit Startup ProceduresPre-Startup Checklist Compressor DamageCompressor Amp Draw Startup LogEvaporator Water Cooled Units Air Cooled UnitsPoints List RTM Module Points List Gbas ModulePoints List Ecem Module Points List -TracerTMLCI-I ModuleUnit Control Components RTM Module Board Standard on all UnitsTable O-GI-3. RTM setpoint analog inputs Table O-GI-2. RTM sensor resistance vs. temperatureVAV Box Option Ventilation Override Module VOM Option Human Interface Module Standard on all UnitsHeat Module Purge sequence D Supply fan on Supply fan VFD on if equippedGeneric BuildingAutomation System Module Option Table O-GI-6. Gbas analog input setpoints Table O-GI-7. Gbas input voltage corresponding setpointsWaterside Components Figure O-GI-3. Basic water piping, constant water flow UnitAirside Components General Operation information Airside Economizer Interface with Comparative Enthalpy Air-Cooled CondensersInput Devices and System Functions ProperWaterTreatmentReturn AirTemperature Sensor Supply Air Temperature SensorSupply Airflow Proving Switches Filter SwitchOperation operation Control Sequences OperationUnoccupied Sequence of Operation Tracer Summit SystemTimed Override Activation ICS Morning WarmupCycling Capacity Morning Warmup MWU Occupied Sequence Supply Air Setpoint Reset VAV Units Only Mechanical CoolingWater-Cooled Units Only Electric HeatTable O-SO-1. Compressor Stages CompressorsCompressor Lead/Lag Operation Table O-SO-2. Pressure cutouts Step ControlEvaporator Coil Frost Protection Service Valve Option OperationMaintenance information Table M-GI-1. SCWG/SIWG/SCRG/SIRG General Maintenance DataAir Filters Maintenance proceduresMaintenance Procedures Remove all standing water Inspecting and Cleaning the Drain PanInspecting and Cleaning the Fan Fan Drive Supply FanVariable Frequency Drive VFD Fan Bearings Table M-MP-1. Baldor Fan Bearing Lubrication ScheduleTable M-MP-2.AO Smith Bearing Lubrication Schedule Table M-MP-3. Compatible Fan Bearing GreaseTable M-MP-4. Fan shaft bearing torques Fan BeltTensionDeflection = belt span/64 Adjusting BeltTension BeltRefrigerant Evacuation Refrigerant SystemConfined Space Hazards Refrigerant LeakTesting Motor Winding DamageUse of Pressure Regulator Valves Gauges R407cMaintenance Inlet GuideVanes Coil Fin CleaningProper Coil CleaningAgent Coil Freezeup Chemical Cleaning of Condenser and Economizer Coil Flow Switch MaintenanceCleaning the Flow Switch Piping ComponentsMaintenance Periodic Checklists Monthly ChecklistSemi-Annual Maintenance Annual MaintenanceCheck the zone thermostat settings Operating ProceduresCommon Unit Problems and Solutions System ChecksMaintenance diagnostics DiagnosticsHeat Module Auxilliary Temperature Sensor Fail Emergency StopEntering Cond WaterTemp Sensor Fail Entering Water Temp Sensor FailMode Input Failure Low Air Temp Limit TripLow Pressure Control Open Circuit 1, 2, 3, or MCM Communications FailureNSB Panel ZoneTemperature Sensor Failure Check Field/unit wiring between RTM and NSB PanelHumidity Sensor Failure Temp. Sensor FailureRTM Data Storage Error RTM Zone Sensor FailureSupply Fan VFD Bypass Enabled ProblemThe LCI-I has lost communication withTracer SummitSupply Fan Failure LCI-I Module Comm FailureWSM Communications Fail Render all HI keystrokes ineffectiveVOM Communications Failure WSM Mixed AirTemp Sensor Fail Water Flow Fail114 115 Literature Order Number

SCXG-SVX01B-EN specifications

The Trane SCXG-SVX01B-EN is an advanced variable refrigerant flow (VRF) system designed to provide efficient and flexible heating and cooling solutions for commercial and residential applications. This system exemplifies Trane's commitment to innovation, energy efficiency, and ease of installation, making it a standout choice in the industry.

One of the main features of the SCXG-SVX01B-EN is its ability to deliver precise temperature control across multiple zones. The system utilizes a modular design that allows for the connection of multiple indoor units to a single outdoor unit, enabling simultaneous heating and cooling in different areas of a building. This zoned comfort not only enhances occupant satisfaction but also contributes to energy savings by allowing for targeted climate control where it is most needed.

Trane's VRF technology is complemented by its inverter-driven compressors, which adjust their speed according to the demand for heating or cooling. This means that the system operates more efficiently than traditional systems by consuming less energy during partial load conditions. The SCXG-SVX01B-EN also integrates advanced heat recovery capabilities, allowing it to transfer heat from one zone to another, further optimizing energy usage.

The unit's compact design simplifies installation, making it suitable for both retrofit projects and new constructions. The flexible piping layout supports various configurations, allowing easy adaptation to the building's architecture. The model also incorporates intelligent controls, offering a user-friendly interface that enhances operational flexibility and promotes energy management.

In addition to its performance features, the Trane SCXG-SVX01B-EN emphasizes sustainability. It uses advanced refrigerants with low global warming potential (GWP), aligning with environmental regulations and helping to minimize the system's ecological footprint. The durable construction of the system ensures longevity and reliability, reducing maintenance costs and enhancing overall operational efficiency.

Finally, Trane supports its products with comprehensive warranties and a network of service professionals, ensuring that customers have access to expert assistance throughout the life cycle of their system. The SCXG-SVX01B-EN represents a blend of technology, efficiency, and versatility, making it an ideal choice for those seeking an effective heating and cooling solution.