Trane SCXG-SVX01B-EN manual Mechanical Specifications, Duct Connections, Water Piping

Page 30

Mechanical Specifications

Duct Connections

￿WARNING

Hazardous Voltage w/Capaci- tors!

Disconnect all electric power, including remote disconnects before servicing. Follow proper lockout/tagout proce- dures to ensure the power cannot be inadvertently energized. For variable frequency drives or other energy storing components provided byTrane or others, refer to the appropriate manufacturer’s literature for allowable waiting periods for discharge of capacitors.Verify with an appropriate voltmeter that all capacitors have discharged. Failure to disconnect power and discharge capacitors before servicing could result in death or serious injury.

Note: For additional information regard- ing the safe discharge of capacitors, see PROD-SVB06A-EN or PROD-SVB06A-FR.

Return air enters the rear of the unit and conditioned supply air discharges through the top. Attach supply air ductwork directly to the unit’s top panel, around the fan discharge opening. A duct collar is not provided.

Note: Units equipped with the flexible horizontal discharge plenum option may include a duct collar when holes are factory cut. If discharge openings are field-cut, refer to the “Plenum Installation” section.

Install all air ducts according to the National Fire Protection Association standards for the “Installation of Air Conditioning andVentilation Systems other than ResidenceType (NFPA 90A) and ResidenceTypeWarm Air Heating and Air Conditioning Systems (NFPA 90B).

Make duct connections to the unit with a flexible material such as heavy canvas. If

Note:The compressors and fan assembly are internally isolated.Therefore, external isolation devices (spring mounting isolators) are at the discretion of a vibration specialist consulted by the building or HVAC system designer.

Run the ductwork straight from the opening for a minimum of three fan diameters. See Figure I-MR-1. Extend remaining ductwork as far as possible without changing size or direction. Do not make abrupt turns or transitions near the unit due to increased noise and excessive static losses. Use elbows with splitters or turning vanes to minimize static losses.

Poorly constructed turning vanes may cause airflow generated noise. Align the fan outlet properly with the ductwork to decrease noise levels in the duct and to increase fan performance. To complete trunk ductwork to theVAV terminal units, refer to theVAV box manuals for specific requirements. Check total external static pressures against fan characteristics to be sure the required airflow is available throughout the ductwork.

To achieve maximum acoustical perfor- mance, minimize the duct static pressure setpoint.

Discharge

Duct

3 Fan

3-inchDiameters

Flexible

Duct

Return

Air

Water Piping

￿WARNING

High PressureWater!

Provide relief valves on system water piping to prevent instantaneous release of high pressure water. Failure to provide relief valves could result in death or serious injury or water pump damage or unit failure.

Condenser Connections

Condenser water piping knockouts are in the lower left end panel. If necessary, remove insulation to gain access. All field installed piping must conform to applicable local, state, and federal codes. To complete condenser water connections follow the procedure below.

Note: Four condenser waterline drain plugs ship in a bag in the unit’s left end. The installer must field install these four plugs using pipe thread sealer. An additional plug is provided for units with a waterside economizer.

1.Attach the water supply line to the inlet connection, and the return line to the outlet connection. Entering and leaving water connections for all condensers are factory manifolded and require only single connections for entering and leaving water. If the unit has a waterside economizer and/or control valves, the factory pipes between these components.

2.If using a cooling tower, refer to Figure

I-MR-2 for a typical piping circuit from the unit.

3.Ensure the water pressure to the unit does not exceed 400 psig.

Note: To prevent water pump damage, design system piping to provide relief when using energy saving waterside economizer valves.

afire hazard exists,Trane recommends using Flexweave 1000, type FW30 or equivalent canvas. Use three inches for the return duct and three inches for the discharge duct. Keep the material loose to absorb fan vibration.

Figure I-MR-1. Duct connection recommenda- tions

30

SCXG-SVX01B-EN

Image 30
Contents JO and later design sequence ModelsSpecial Note on Refrigeration Emissions IntroductionHazard Identification HazardousVoltage w/CapacitorsContents Features and Benefits Refrigerant Handling ProceduresModular Series Self-Contained Unit Components Installation information Unit NameplateModel Number Description Scwg Model Number DescriptionDigit Digit 31 Compressor ServiceValvesDigit 22 Unit Finish Digit 24 Unit ConnectionSelf-Contained Ship-WithAccessory Model Number Description Model Number Description PswgAfter-ShipmentAccessory Model Number Receiving and Handling Shipping PackageInstallation Preparation Section ServiceAccessTable I-PC-1. Service and code clearance requirements TopView CCRC/CIRC 20, 29Rigging and Unit Handling Lifting Equipment CapacityUnit Handling Procedure Figure I-PC-7.Assembled modular unit proper riggingRemove panels FML, FMM, and FMR Split-Apart Unit AssemblyIntelliPak UnitsUCM Only Units with Thermostat OnlyFigure I-PC-9 How to assemble the split apart modular unit Pre-Installation Checklist Skid RemovalExternal Unit Isolation SCWG/SIWG Dimensions, DimensionsWeights Left-side viewSCRG/SIRG Dimensions, SCRG/SIRGWeight, lbsLeft-side View Right-side view Top view Dimensions Weights Detail Dimensions,CCRC/CIRC Electrical connections, CCRC/CIRC Air-cooled condenser dimensions & weight, in-lbsCCRC/CIRC -Air-Cooled Condenser CCRC/CIRC Refrigerant connections,Hot water coil dimensions & weight, in-lbs Hot Water CoilSteam coil dimensions, in-lbs Steam CoilElectric heat coil dimensions & weight, in-lbs Electric Heat CoilFlexible Horizontal Discharge Plenum Waterside economizer weight, in-lbs Waterside EconomizerAirside economizer dimensions & weight, in-lbs Airside EconomizerDetail a Detail B Control and LineVoltage Dimensions Weights VFDVariable Frequency Drive Option VFD Result in death or serious injury Mounting RequirementsElectrical Installation Procedure VFD with bypass dimensions,Variable Frequency Drive with Bypass Water Piping Mechanical SpecificationsDuct Connections Hazardous Voltage w/Capaci- torsWaterside Piping Arrangements Table I-MR-1. Water Connection SizesBrazing Procedures Refrigerant Piping Air-Cooled Units OnlyHazard of Explosion and Deadly Gases Live Electrical Components Unit Wiring DiagramsSupply PowerWiring Equipment DamageSelection Procedures Supply Fan Isolators Installation requirementsPre-Startup Procedures Shipping bracketFigure I-PR-3. Correct plenum insulation placement Field Wiring Connections Airside Economizer InstallationUnit Installation Unit HandlingStatic PressureTransducer Installation VAV units only Installing theTransducerTransducer Location Waterside Economizer Installation Procedure Figure I-PR-7. Installing the waterside economizerTubing assemblies for waterside econo Mizer left-hand piping Waterside Economizer Ship-Separate Parts List Hydronic Coil Installation Installation ProcedureUnit Structural Integrity Electric Heat Installation Electric Heat CoilWiring ProcedureTable I-PR-2.Available Electric Heat kW CV Unit Zone Sensor Options Standard with All IntelliPak UnitsZone Sensor Options for IntelliPak Control Units BAYSENS077* DescriptionBAYSENS074 Description CV andVAV Unit Zone Sensor OptionsVAV Unit Zone Sensor Option BAYSENS073 DescriptionMounting Location Zone Sensor InstallationWiring Mounting the SubbaseRight Mounting Directly to the Wall Mounting to Junction Box ConstantVolume Zone Sensor BAYSENS019 Description Variable AirVolume Zone Sensor BAYSENS020B DescriptionProgrammable Zone Sensors Programmable Zone Sensor Installation Airflows from adjacent zones or other unitsWiring theTimeclock Time Clock InstallationTime Clock Installation Checklist Time Clock OptionRemote Human Interface Panel Remote Human Interface Panel InstallationHuman Interface HI Panel Location RecommendationsProcedure Mounting the Remote Human Interface RHI PanelWall Mounting the RHI Panel Pre-startup Communication Link ShieldedTwisted PairWiring Wiring the Remote Human InterfaceLowVoltage AC FieldWiring Connections Interprocessor Communication Bridge ModuleWiringConnecting toTracer Summit Pre-Startup ChecklistInstallation programming Programmable Zone Sensor OptionsHeat supply air Cool supply air Warmup temperature During Programming IndicatesKeypad Operation Keypad Lockout Temporary Manual OverrideTime Button Up and Down Button ArrowsTemporary Override Run Mode Figure I-P-6.Temporary manual override menu screenFigure I-P-7.Temporary manual override run mode screen Table I-P-1. Zone sensor BAYSENS019 option menu settingsTo use Intelligent Copy Remote Panel Indicator Signals From UCM to ZSMIntelligent Copy Off FlashingIcon Descriptions Figure I-P-9.BAYSENS019 complete icon displayFigure I-P-10.BAYSENS020 complete icon display Programming Setting theTimeProgramming theTime Clock Option To review and change programsPre-Startup Checklist Installation startupUnit Startup Procedures Compressor DamageStartup Log EvaporatorCompressor Amp Draw Water Cooled Units Air Cooled UnitsPoints List Ecem Module Points List RTM ModulePoints List Gbas Module Points List -TracerTMLCI-I ModuleUnit Control Components RTM Module Board Standard on all UnitsTable O-GI-2. RTM sensor resistance vs. temperature VAV Box OptionTable O-GI-3. RTM setpoint analog inputs Human Interface Module Standard on all Units Heat ModuleVentilation Override Module VOM Option Purge sequence D Supply fan on Supply fan VFD on if equippedGeneric BuildingAutomation System Module Option Table O-GI-6. Gbas analog input setpoints Table O-GI-7. Gbas input voltage corresponding setpointsWaterside Components Figure O-GI-3. Basic water piping, constant water flow UnitAirside Components General Operation information Airside Economizer Interface with Comparative Enthalpy Air-Cooled CondensersInput Devices and System Functions ProperWaterTreatmentSupply Airflow Proving Switches Return AirTemperature SensorSupply Air Temperature Sensor Filter SwitchUnoccupied Sequence of Operation Operation operationControl Sequences Operation Tracer Summit SystemMorning Warmup Cycling Capacity Morning Warmup MWUTimed Override Activation ICS Occupied Sequence Water-Cooled Units Only Supply Air Setpoint Reset VAV Units OnlyMechanical Cooling Electric HeatCompressors Compressor Lead/Lag OperationTable O-SO-1. Compressor Stages Step Control Evaporator Coil Frost ProtectionTable O-SO-2. Pressure cutouts Service Valve Option OperationMaintenance information Table M-GI-1. SCWG/SIWG/SCRG/SIRG General Maintenance DataMaintenance procedures Maintenance ProceduresAir Filters Inspecting and Cleaning the Drain Pan Inspecting and Cleaning the FanRemove all standing water Supply Fan Variable Frequency Drive VFDFan Drive Table M-MP-2.AO Smith Bearing Lubrication Schedule Fan BearingsTable M-MP-1. Baldor Fan Bearing Lubrication Schedule Table M-MP-3. Compatible Fan Bearing GreaseFan BeltTension Deflection = belt span/64Table M-MP-4. Fan shaft bearing torques Adjusting BeltTension BeltRefrigerant System Confined Space HazardsRefrigerant Evacuation Use of Pressure Regulator Valves Gauges Refrigerant LeakTestingMotor Winding Damage R407cMaintenance Coil Fin Cleaning Proper Coil CleaningAgentInlet GuideVanes Coil Freezeup Cleaning the Flow Switch Chemical Cleaning of Condenser and Economizer CoilFlow Switch Maintenance Piping ComponentsSemi-Annual Maintenance Maintenance Periodic ChecklistsMonthly Checklist Annual MaintenanceCommon Unit Problems and Solutions Check the zone thermostat settingsOperating Procedures System ChecksMaintenance diagnostics DiagnosticsEntering Cond WaterTemp Sensor Fail Heat Module Auxilliary Temperature Sensor FailEmergency Stop Entering Water Temp Sensor FailLow Pressure Control Open Circuit 1, 2, 3, or Mode Input FailureLow Air Temp Limit Trip MCM Communications FailureHumidity Sensor Failure NSB Panel ZoneTemperature Sensor FailureCheck Field/unit wiring between RTM and NSB Panel Temp. Sensor FailureRTM Data Storage Error RTM Zone Sensor FailureSupply Fan Failure Supply Fan VFD Bypass EnabledProblemThe LCI-I has lost communication withTracer Summit LCI-I Module Comm FailureRender all HI keystrokes ineffective VOM Communications FailureWSM Communications Fail WSM Mixed AirTemp Sensor Fail Water Flow Fail114 115 Literature Order Number

SCXG-SVX01B-EN specifications

The Trane SCXG-SVX01B-EN is an advanced variable refrigerant flow (VRF) system designed to provide efficient and flexible heating and cooling solutions for commercial and residential applications. This system exemplifies Trane's commitment to innovation, energy efficiency, and ease of installation, making it a standout choice in the industry.

One of the main features of the SCXG-SVX01B-EN is its ability to deliver precise temperature control across multiple zones. The system utilizes a modular design that allows for the connection of multiple indoor units to a single outdoor unit, enabling simultaneous heating and cooling in different areas of a building. This zoned comfort not only enhances occupant satisfaction but also contributes to energy savings by allowing for targeted climate control where it is most needed.

Trane's VRF technology is complemented by its inverter-driven compressors, which adjust their speed according to the demand for heating or cooling. This means that the system operates more efficiently than traditional systems by consuming less energy during partial load conditions. The SCXG-SVX01B-EN also integrates advanced heat recovery capabilities, allowing it to transfer heat from one zone to another, further optimizing energy usage.

The unit's compact design simplifies installation, making it suitable for both retrofit projects and new constructions. The flexible piping layout supports various configurations, allowing easy adaptation to the building's architecture. The model also incorporates intelligent controls, offering a user-friendly interface that enhances operational flexibility and promotes energy management.

In addition to its performance features, the Trane SCXG-SVX01B-EN emphasizes sustainability. It uses advanced refrigerants with low global warming potential (GWP), aligning with environmental regulations and helping to minimize the system's ecological footprint. The durable construction of the system ensures longevity and reliability, reducing maintenance costs and enhancing overall operational efficiency.

Finally, Trane supports its products with comprehensive warranties and a network of service professionals, ensuring that customers have access to expert assistance throughout the life cycle of their system. The SCXG-SVX01B-EN represents a blend of technology, efficiency, and versatility, making it an ideal choice for those seeking an effective heating and cooling solution.