Trane SCXG-SVX01B-EN manual Temporary Manual Override, Time Button, Keypad Lockout

Page 60

Installation programming

Note: Blank temperature settings may be entered at any of the four daily periods. When a setpoint is left blank and in an occupied condition, the ZSM will default to the last occupied setpoint. When a setpoint is left blank and in an unoccupied condi- tion, the ZSM will default to the last unoccupied setpoint.

Temporary Manual Override

While in normal run mode, depressing the hold temp button toggles the ZSM to the temporary manual override menu.

The mode will override any number of programmed setpoints through any of the 28 programmed periods. After entering setpoints and length of override time, these new settings are used in place of the setpoints programmed for normal run mode.

Time Button

While in the program menu, each time you press and release the positive or negative side of the time button, the time will advance or decrease by ten minute increments. If you press and hold the positive or negative side (“minus” and “plus” keys), the ZSM will increment rapidly.

When the display is in the normal run mode, each time you press and release the positive or negative side of the time button (“minus” and “plus”keys), the time will advance or decrease by one minute. If you press and hold the positive or negative side (“minus” and “plus” keys), the ZSM will increment rapidly.

Note: Blank temperature settings may be entered at any of the four daily periods. When a setpoint is left blank and in an occupied condition, the ZSM will default to the last occupied setpoint.

Keypad Lockout

If you simultaneously depress and hold both the positive and negative sides of the “minus” and “plus” keys for four seconds, the lock icon will appear and all keypad functions will lock out. If you repeat this operation, the lock icon will disappear and all keypad functions will be available again.

Keypad lockout applies only to normal run mode and temporary manual override mode.

Day Button

In normal run mode, depressing the day button will move the current day ahead.

While in the program menu, depressing the day button will move you through the seven days of the week and allow you to program temperature settings for each of the four daily periods.

Erase Button

Pressing the erase button while in normal run mode will turn off the check filter icon.

Pressing the erase button while in the program menu, will erase all time and temperature setpoints of a given period.

The erase button will acknowledge the failure buzzer (option 16) until 12:00 am.

Mode Button

BAYSENS019 only: Pressing the mode

button toggles through all modes: off, heat, cool, auto, and emer (HP unit).

BAYSENS020 only: Pressing the mode button while in normal run mode, or temporary manual override run mode, will toggle through both modes, off and auto.

Fan Button

The fan button allows you to toggle between on and auto.

Up and Down Button Arrows

Depressing or arrow while in normal run mode will cause your ZSM to toggle to the temporary manual override menu.

Depressing either or arrow while in the program menu or temporary override menu will cause the temperature setpoint to advance or decrease in one degree increments.

Depressing and holding either the or arrow will cause the temperature setting to increment rapidly.

Simultaneously depressing the or arrow for two seconds while in the program menu or temporary override menu will toggle the ZSM between an occupied and unoccupied condition.

Holdtemp Button

While in normal run mode, depressing the hold temp button toggles the ZSM to

a temporary manual override menu. See Figure I-P-4.

This mode overrides any number of programmed setpoints through any of the 28 programmed periods. After entering setpoints and length of override time, these settings are now used.

Figure I-P-4.Temporary manual override menu screen

Keypad Operation for Temporary Manual Override Menu

The keypad has the same function in temporary manual override menu as in all other menus, with a few exceptions:

Depressing the day button will toggle your ZSM between the day and hour icon. See Figure I-P-4.

Depressing the mode button will toggle your ZSM between the heat and cool icons and setpoints.

Depressing the erase button will cancel the override and return the ZSM to normal run mode.

Depressing the holdtemp or program buttons while in the temporary manual override menu will toggle your ZSM to the temporary override mode. See Figure I-P-5.

Figure I-P-5. Override run mode screen

60

SCXG-SVX01B-EN

Image 60
Contents JO and later design sequence ModelsIntroduction Hazard IdentificationSpecial Note on Refrigeration Emissions HazardousVoltage w/CapacitorsContents Features and Benefits Refrigerant Handling ProceduresModular Series Self-Contained Unit Components Installation information Unit NameplateModel Number Description Scwg Model Number DescriptionDigit 31 Compressor ServiceValves Digit 22 Unit FinishDigit Digit 24 Unit ConnectionSelf-Contained Ship-WithAccessory Model Number Description Model Number Description PswgAfter-ShipmentAccessory Model Number Receiving and Handling Shipping PackageInstallation Preparation ServiceAccess Table I-PC-1. Service and code clearance requirementsSection TopView CCRC/CIRC 20, 29Rigging and Unit Handling Lifting Equipment CapacityUnit Handling Procedure Figure I-PC-7.Assembled modular unit proper riggingSplit-Apart Unit Assembly IntelliPak UnitsUCM OnlyRemove panels FML, FMM, and FMR Units with Thermostat OnlyFigure I-PC-9 How to assemble the split apart modular unit Pre-Installation Checklist Skid RemovalExternal Unit Isolation Dimensions WeightsSCWG/SIWG Dimensions, Left-side viewSCRG/SIRG Dimensions, SCRG/SIRGWeight, lbsLeft-side View Right-side view Top view Dimensions Weights Detail Dimensions,CCRC/CIRC Air-cooled condenser dimensions & weight, in-lbs CCRC/CIRC -Air-Cooled CondenserCCRC/CIRC Electrical connections, CCRC/CIRC Refrigerant connections,Hot water coil dimensions & weight, in-lbs Hot Water CoilSteam coil dimensions, in-lbs Steam CoilElectric heat coil dimensions & weight, in-lbs Electric Heat CoilFlexible Horizontal Discharge Plenum Waterside economizer weight, in-lbs Waterside EconomizerAirside economizer dimensions & weight, in-lbs Airside EconomizerDetail a Detail B Dimensions Weights VFD Variable Frequency Drive Option VFDControl and LineVoltage Result in death or serious injury Mounting RequirementsElectrical Installation Procedure VFD with bypass dimensions,Variable Frequency Drive with Bypass Mechanical Specifications Duct ConnectionsWater Piping Hazardous Voltage w/Capaci- torsWaterside Piping Arrangements Table I-MR-1. Water Connection SizesBrazing Procedures Refrigerant Piping Air-Cooled Units OnlyHazard of Explosion and Deadly Gases Unit Wiring Diagrams Supply PowerWiringLive Electrical Components Equipment DamageSelection Procedures Installation requirements Pre-Startup ProceduresSupply Fan Isolators Shipping bracketFigure I-PR-3. Correct plenum insulation placement Airside Economizer Installation Unit InstallationField Wiring Connections Unit HandlingStatic PressureTransducer Installation VAV units only Installing theTransducerTransducer Location Waterside Economizer Installation Procedure Figure I-PR-7. Installing the waterside economizerTubing assemblies for waterside econo Mizer left-hand piping Waterside Economizer Ship-Separate Parts List Hydronic Coil Installation Installation ProcedureUnit Structural Integrity Electric Heat Installation Electric Heat CoilWiring ProcedureTable I-PR-2.Available Electric Heat kW Standard with All IntelliPak Units Zone Sensor Options for IntelliPak Control UnitsCV Unit Zone Sensor Options BAYSENS077* DescriptionCV andVAV Unit Zone Sensor Options VAV Unit Zone Sensor OptionBAYSENS074 Description BAYSENS073 DescriptionZone Sensor Installation WiringMounting Location Mounting the SubbaseRight Mounting Directly to the Wall Mounting to Junction Box ConstantVolume Zone Sensor BAYSENS019 Description Variable AirVolume Zone Sensor BAYSENS020B DescriptionProgrammable Zone Sensors Programmable Zone Sensor Installation Airflows from adjacent zones or other unitsTime Clock Installation Time Clock Installation ChecklistWiring theTimeclock Time Clock OptionRemote Human Interface Panel Installation Human Interface HI PanelRemote Human Interface Panel Location RecommendationsProcedure Mounting the Remote Human Interface RHI PanelWall Mounting the RHI Panel Pre-startup Wiring the Remote Human Interface LowVoltage AC FieldWiring ConnectionsCommunication Link ShieldedTwisted PairWiring Interprocessor Communication Bridge ModuleWiringConnecting toTracer Summit Pre-Startup ChecklistInstallation programming Programmable Zone Sensor OptionsHeat supply air Cool supply air Warmup temperature During Programming IndicatesKeypad Operation Temporary Manual Override Time ButtonKeypad Lockout Up and Down Button ArrowsTemporary Override Run Mode Figure I-P-6.Temporary manual override menu screenFigure I-P-7.Temporary manual override run mode screen Table I-P-1. Zone sensor BAYSENS019 option menu settingsRemote Panel Indicator Signals From UCM to ZSM Intelligent CopyTo use Intelligent Copy Off FlashingIcon Descriptions Figure I-P-9.BAYSENS019 complete icon displayFigure I-P-10.BAYSENS020 complete icon display Setting theTime Programming theTime Clock OptionProgramming To review and change programsInstallation startup Unit Startup ProceduresPre-Startup Checklist Compressor DamageStartup Log EvaporatorCompressor Amp Draw Water Cooled Units Air Cooled UnitsPoints List RTM Module Points List Gbas ModulePoints List Ecem Module Points List -TracerTMLCI-I ModuleUnit Control Components RTM Module Board Standard on all UnitsTable O-GI-2. RTM sensor resistance vs. temperature VAV Box OptionTable O-GI-3. RTM setpoint analog inputs Human Interface Module Standard on all Units Heat ModuleVentilation Override Module VOM Option Purge sequence D Supply fan on Supply fan VFD on if equippedGeneric BuildingAutomation System Module Option Table O-GI-6. Gbas analog input setpoints Table O-GI-7. Gbas input voltage corresponding setpointsWaterside Components Figure O-GI-3. Basic water piping, constant water flow UnitAirside Components General Operation information Airside Economizer Interface with Comparative Enthalpy Air-Cooled CondensersInput Devices and System Functions ProperWaterTreatmentReturn AirTemperature Sensor Supply Air Temperature SensorSupply Airflow Proving Switches Filter SwitchOperation operation Control Sequences OperationUnoccupied Sequence of Operation Tracer Summit SystemMorning Warmup Cycling Capacity Morning Warmup MWUTimed Override Activation ICS Occupied Sequence Supply Air Setpoint Reset VAV Units Only Mechanical CoolingWater-Cooled Units Only Electric HeatCompressors Compressor Lead/Lag OperationTable O-SO-1. Compressor Stages Step Control Evaporator Coil Frost ProtectionTable O-SO-2. Pressure cutouts Service Valve Option OperationMaintenance information Table M-GI-1. SCWG/SIWG/SCRG/SIRG General Maintenance DataMaintenance procedures Maintenance ProceduresAir Filters Inspecting and Cleaning the Drain Pan Inspecting and Cleaning the FanRemove all standing water Supply Fan Variable Frequency Drive VFDFan Drive Fan Bearings Table M-MP-1. Baldor Fan Bearing Lubrication ScheduleTable M-MP-2.AO Smith Bearing Lubrication Schedule Table M-MP-3. Compatible Fan Bearing GreaseFan BeltTension Deflection = belt span/64Table M-MP-4. Fan shaft bearing torques Adjusting BeltTension BeltRefrigerant System Confined Space HazardsRefrigerant Evacuation Refrigerant LeakTesting Motor Winding DamageUse of Pressure Regulator Valves Gauges R407cMaintenance Coil Fin Cleaning Proper Coil CleaningAgentInlet GuideVanes Coil Freezeup Chemical Cleaning of Condenser and Economizer Coil Flow Switch MaintenanceCleaning the Flow Switch Piping ComponentsMaintenance Periodic Checklists Monthly ChecklistSemi-Annual Maintenance Annual MaintenanceCheck the zone thermostat settings Operating ProceduresCommon Unit Problems and Solutions System ChecksMaintenance diagnostics DiagnosticsHeat Module Auxilliary Temperature Sensor Fail Emergency StopEntering Cond WaterTemp Sensor Fail Entering Water Temp Sensor FailMode Input Failure Low Air Temp Limit TripLow Pressure Control Open Circuit 1, 2, 3, or MCM Communications FailureNSB Panel ZoneTemperature Sensor Failure Check Field/unit wiring between RTM and NSB PanelHumidity Sensor Failure Temp. Sensor FailureRTM Data Storage Error RTM Zone Sensor FailureSupply Fan VFD Bypass Enabled ProblemThe LCI-I has lost communication withTracer SummitSupply Fan Failure LCI-I Module Comm FailureRender all HI keystrokes ineffective VOM Communications FailureWSM Communications Fail WSM Mixed AirTemp Sensor Fail Water Flow Fail114 115 Literature Order Number

SCXG-SVX01B-EN specifications

The Trane SCXG-SVX01B-EN is an advanced variable refrigerant flow (VRF) system designed to provide efficient and flexible heating and cooling solutions for commercial and residential applications. This system exemplifies Trane's commitment to innovation, energy efficiency, and ease of installation, making it a standout choice in the industry.

One of the main features of the SCXG-SVX01B-EN is its ability to deliver precise temperature control across multiple zones. The system utilizes a modular design that allows for the connection of multiple indoor units to a single outdoor unit, enabling simultaneous heating and cooling in different areas of a building. This zoned comfort not only enhances occupant satisfaction but also contributes to energy savings by allowing for targeted climate control where it is most needed.

Trane's VRF technology is complemented by its inverter-driven compressors, which adjust their speed according to the demand for heating or cooling. This means that the system operates more efficiently than traditional systems by consuming less energy during partial load conditions. The SCXG-SVX01B-EN also integrates advanced heat recovery capabilities, allowing it to transfer heat from one zone to another, further optimizing energy usage.

The unit's compact design simplifies installation, making it suitable for both retrofit projects and new constructions. The flexible piping layout supports various configurations, allowing easy adaptation to the building's architecture. The model also incorporates intelligent controls, offering a user-friendly interface that enhances operational flexibility and promotes energy management.

In addition to its performance features, the Trane SCXG-SVX01B-EN emphasizes sustainability. It uses advanced refrigerants with low global warming potential (GWP), aligning with environmental regulations and helping to minimize the system's ecological footprint. The durable construction of the system ensures longevity and reliability, reducing maintenance costs and enhancing overall operational efficiency.

Finally, Trane supports its products with comprehensive warranties and a network of service professionals, ensuring that customers have access to expert assistance throughout the life cycle of their system. The SCXG-SVX01B-EN represents a blend of technology, efficiency, and versatility, making it an ideal choice for those seeking an effective heating and cooling solution.