Agilent Technologies 6843A, 6834B, 6814B manual Case of Trouble, Error Messages, Line Fuse

Page 29

Turn-On Checkout - 3

In Case of Trouble

Error Messages

Ac source failure may occur during power-on selftest or during operation. In either case, the display may show an error message that indicates the reason for the failure.

Selftest Errors

Pressing the Shift and Error keys will show the error number. Selftest error messages appear as: ERROR <n>, where "n" is a number listed in the following table. If this occurs, turn the power off and then back on to see if the error persists. If the error message persists, the ac source requires service.

Table 3-1. Power-On Selftest Errors

Error No.

Error 0

Error 1

Error 2

Error 3

Error 4

Error 5

Error 6

Error 10 Error 11 to 18

Failed Test

No error

Non-volatile RAM RD0 section checksum failed Non-volatile RAM CONFIG section checksum failed Non-volatile RAM CAL section checksum failed Non-volatile RAM WAVEFORM section checksum failed Non-volatile RAM STATE section checksum failed Non-volatile RAM LIST section checksum failed

RAM selftest

DAC selftest 1 to 8

Runtime Error Messages

Under unusual operating conditions, the front panel display may show OVLD. This indicates that the output voltage or current is beyond the range of the meter readback circuit. If the front panel display indicates ------------ , a GPIB measurement is in progress. Appendix C lists other error messages that may appear at runtime.

Line Fuse

If the ac source appears "dead" with a blank display and the fan not running, first check your power source to be certain line voltage is being supplied to the ac source. If the power source is normal, the ac source line fuse may be defective. If the ac source has a defective fuse, replace it only once. If it fails again, investigate the reason for the failure. Proceed as follows:

1.Turn off the front panel power switch and remove the input power (unplug the power cord or open the safety disconnect).

2.Remove the fuse cover from the rear panel.

3.Unscrew the fuse caps and remove the fuses.

4.If any fuses are defective, replace all three with fuses of the same type (see Chapter 1).

5.Turn on the ac source and check the operation. If it is normal. replace the fuse cover.

Maintenance Note: It is recommended that new fuses be installed every four years.

29

Image 29
Contents User’s Guide AC Power Solutions Agilent Models 6814B, 6834B, and 6843ACertification Warranty InformationGeneral Safety SummarySafety Symbols EMC DeclarationPrinting History Acoustic Noise InformationTable of Contents Performing the Calibration Procedure Specifications Supplemental CharacteristicsError Number List Entry Keys Examples of Front Panel ProgrammingLocation Document OrientationTopic Options, Accessories, and User Replaceable Parts Safety ConsiderationsOption Description Agilent Part NumberModel Description DescriptionCapabilities Ranges Output CharacteristicFront Panel/Remote Operation Output VA Capability AC Source Output Characteristic in real-time modePage Inspection CleaningDamage Packaging Material Items SuppliedBench Operation LocationRack Mounting Not block the fan exhaust at the rear of the unitInput Source and Line Fuse Installing the Power CordInput Connections Output Connections Output ConnectionsVoltage Drops Wire ConsiderationsCurrent Ratings Ampacity and Resistance of Stranded Copper ConductorsRemote Sense Connections Remote Sense ConnectionsDigital Connections Trigger ConnectionsOVP Considerations Output RatingController Connections Gpib ConnectorRS-232 Connector Interface CommandsRS-232 Interface RS-232 Data FormatNull Modem Interface Lines Response Data Terminator Hardware HandshakePreliminary Checkout IntroductionCheckout Procedure Using the KeypadProtclear Procedure Display ExplanationVolt Currlev VoltprotCurrprot Currprot OFFLine Fuse Error MessagesCase of Trouble Page Front Panel, Overall View Front Panel DescriptionAC+DC System Keys Display Command FunctionImmediate Action Keys Annunciator On Phase SelectedFunction Keys Meter Display Keys Scrolling KeysDisplay Measurement KBESSEL, RectDisplay Output Control KeysRST CLS Protection and Status Control KeysInitimmed Trigger and List Control KeysIMM AbortThrough Are used for entering numeric values Is the decimal Entry KeysProcedure for Single-Phase AC Sources Setting the Output Voltage AmplitudeExamples of Front Panel Programming Set the output to 120 V rms as followsPhase 3 to 235 Vrms Procedure for Three-Phase AC SourcesAction Display To verify the output, you can measure it as followsOvercurrent protection feature as follows Setting the Output FrequencySetting a Protection Feature Step Transient Using Transient Voltage ModesVoltt Voltm StepVoltm Pulse Pulse TransientWidth DcycleVoltm Fixed Voltm List Count List TransientAction Volt EOL Step Auto Trigger Delays and Phase SynchronizationSyncphas Initimmed Syncsour PhaseExample Display Example Voltm Step Syncsour Phase Syncphas InitimmedProgramming Slew Rates Using Slew Rates to Generate WaveformsSlew Voltm FixedStep Slewm SlewtMeasuring Peak Inrush Current Syncsour Phase SyncphasRange CurrpeakTo configure the RS-232 interface, proceed as follows Setting the Gpib Address and RS-232 ParametersSaving and Recalling Operating States Action Display To set the Gpib address, proceed as followsAddress Noutputs Agilent 6814B Agilent 6834B Agilent 6843A SpecificationsTable A-1. Performance Specifications1 Table A-2. Supplemental Characteristics Supplemental CharacteristicsSpecifications a Page Recommended Model CharacteristicsEquipment Required Performing the Verification Tests Test SetupTurn-On Checkout Procedure Action Normal Result Voltage Programming and Measurement AccuracyRMS Current Readback Accuracy Agilent 6814B Current Measurement Accuracy Performing the Calibration ProcedureAgilent 6834B Current Measurement Accuracy Agilent 6843A Current Measurement AccuracyFront Panel Calibration Menu Enable Calibration ModeFront Panel Calibration Calibrating the OVP trip point Calibrating and Entering Voltage Calibration ValuesCalibrating and Entering Current Calibration Values Calibrating the Output Impedance Agilent 6843A only Changing the Calibration PasswordSaving the Calibration Constants CalpassTable B-3. Gpib Calibration Error Messages Calibration Error MessagesCalibration Over the Gpib Agilent Calibration Program ListingFigure B-2. Calibration Program Listing Sheet 1 Figure B-2. Calibration Program Listing Sheet 2 Page Table C-1. Error Numbers Error Number ListError Messages Error Messages C Page Index Index Index Canada Australia/New Zealand United States Latin AmericaEurope Asia Pacific JapanManual Updates
Related manuals
Manual 20 pages 27.01 Kb Manual 187 pages 38.86 Kb

6834B, 6843A, 6814B specifications

Agilent Technologies, a leader in electronic test and measurement equipment, offers a range of powerful signal sources including the 6843A, 6834B, 6814B, 6813B, and 6811B models. These instruments are designed to support various applications in research, development, and manufacturing, providing precise signal generation capabilities.

The Agilent 6843A is a versatile signal generator known for its exceptional frequency range and modulation capabilities. It supports an extensive bandwidth, making it ideal for applications that require high-frequency signal generation. With its superior phase noise performance, the 6843A is an excellent choice for radar, wireless communications, and electronic warfare applications. The instrument features an intuitive user interface, allowing engineers to set parameters quickly and efficiently.

Next, the Agilent 6834B offers exceptional performance characteristics, including high output power and low distortion. This signal generator is particularly noted for its ability to produce complex modulation formats, making it suitable for testing advanced wireless communication systems. With a reliable and stable output, the 6834B ensures accurate and repeatable measurements, which is vital for thorough testing processes.

The 6814B model stands out for its dual-channel capabilities, allowing users to generate simultaneous signals for testing multiple components or systems. This feature significantly enhances testing efficiency and flexibility for engineers. With built-in arbitrary waveform functionality, users can create custom waveforms, making the 6814B suitable for a wide range of applications including device characterization and signal processing research.

For those seeking a more compact solution, the Agilent 6813B provides essential signal generation features without compromising on performance. It is designed for a variety of applications across telecommunications and consumer electronics, featuring a straightforward interface and robust performance metrics.

Lastly, the 6811B is an entry-level yet capable model that supports a broad spectrum of testing needs. Perfect for educational and laboratory environments, it provides essential functionalities required for effective signal generation and analysis.

Overall, Agilent Technologies' 6843A, 6834B, 6814B, 6813B, and 6811B signal generators offer an array of features and technologies that cater to various application needs. Their precision, reliability, and user-oriented designs position them as invaluable assets in any testing environment, ensuring engineers can carry out their work with confidence and accuracy.