Agilent Technologies 6843A, 6834B Trigger Delays and Phase Synchronization, Volt EOL Step Auto

Page 47

Front Panel Operation - 4

6.Press until you access the voltage list. This specifies the amplitude of each output point during its corresponding dwell period. The first voltage list point (0) appears in the display. On the Entry keypad, press 1 6 0 and Enter.

7.Pressing the Enter key automatically advances to the step in the list. Enter the following values for voltage list points 1 through 5: 0, 120, 0, 80, 0. Press Enter to enter each value. When you finish, you will be at point 6, which is the end of the list.

Note: Press Shift ￿Index or Shift Index to access and edit any list point.

8.Press until you access the step command. Check that it is at the default mode (AUTO). This lets a single trigger run your list for the specified count.

9.Press Output On/Off to enable the output. The Dis annunciator will go off.

10.Press Trigger Control and Enter to initiate the transient trigger sequence.

11.Press Shift Trigger. This sends the ac source an immediate trigger to generate the four output pulses. The output returns to the immediate value at the end of the list.

Note: To clear a list, press Clear Entry. This truncates or clears the list at the presently displayed list point. Each list must be accessed and cleared separately.

VOLT 0

160

VOLT 1

0

VOLT 2

120

VOLT 3

0

VOLT 4

80

VOLT 5

0

VOLT 6

EOL

STEP AUTO

0 V 60 Hz

INIT:IMMED

0 V 60 Hz

On three-phase ac sources the voltage lists are phase selectable. You can output a different voltage list for each phase. To do this, use Phase Select to first choose the desired phase, as previously described in example 1 for setting the immediate output voltage.

5 - Trigger Delays and Phase Synchronization

The ac source trigger system also lets you program trigger delays as well as synchronize output changes to a specific phase angle of the output waveform.

In example ϕ, the output transient is triggered immediately at the receipt of the trigger signal. In example , a delay time of approximately 16.7 milliseconds elapses between the occurrence of the trigger and the start of the output transient. In example , the trigger source is programmed for phase synchronization, which means that the transient occurs at the first occurrence of the specified phase angle after the trigger signal is received. Example µ describes phase synchronization on three phase ac sources.

Note that phase synchronization is referenced to an internal phase signal. The output of the unit is normally offset by 0° with respect to this internal reference. Because synchronized transient events always occur with respect to the internal reference, the output will normally be in phase with the value programmed for phase synchronization. (The Phase command can be used to change the offset of the output with respect to the internal phase reference.)

47

Image 47
Contents User’s Guide AC Power Solutions Agilent Models 6814B, 6834B, and 6843ACertification Warranty InformationGeneral Safety SummarySafety Symbols EMC DeclarationPrinting History Acoustic Noise InformationTable of Contents Entry Keys Examples of Front Panel Programming Specifications Supplemental CharacteristicsPerforming the Calibration Procedure Error Number ListLocation Document OrientationTopic Agilent Part Number Safety ConsiderationsOptions, Accessories, and User Replaceable Parts Option DescriptionModel Description DescriptionCapabilities Ranges Output CharacteristicFront Panel/Remote Operation Output VA Capability AC Source Output Characteristic in real-time modePage Items Supplied CleaningInspection Damage Packaging MaterialNot block the fan exhaust at the rear of the unit LocationBench Operation Rack MountingInput Source and Line Fuse Installing the Power CordInput Connections Output Connections Output ConnectionsAmpacity and Resistance of Stranded Copper Conductors Wire ConsiderationsVoltage Drops Current RatingsRemote Sense Connections Remote Sense ConnectionsOutput Rating Trigger ConnectionsDigital Connections OVP ConsiderationsController Connections Gpib ConnectorRS-232 Data Format Interface CommandsRS-232 Connector RS-232 InterfaceNull Modem Interface Lines Response Data Terminator Hardware HandshakePreliminary Checkout IntroductionCheckout Procedure Using the KeypadProtclear Procedure Display ExplanationVolt Currprot OFF VoltprotCurrlev CurrprotLine Fuse Error MessagesCase of Trouble Page Front Panel, Overall View Front Panel DescriptionAC+DC System Keys Display Command FunctionImmediate Action Keys Annunciator On Phase SelectedFunction Keys KBESSEL, Rect Scrolling KeysMeter Display Keys Display MeasurementDisplay Output Control KeysRST CLS Protection and Status Control KeysAbort Trigger and List Control KeysInitimmed IMMThrough Are used for entering numeric values Is the decimal Entry KeysSet the output to 120 V rms as follows Setting the Output Voltage AmplitudeProcedure for Single-Phase AC Sources Examples of Front Panel ProgrammingTo verify the output, you can measure it as follows Procedure for Three-Phase AC SourcesPhase 3 to 235 Vrms Action DisplayOvercurrent protection feature as follows Setting the Output FrequencySetting a Protection Feature Voltm Step Using Transient Voltage ModesStep Transient VolttDcycle Pulse TransientVoltm Pulse WidthVoltm Fixed Voltm List Count List TransientAction Volt EOL Step Auto Trigger Delays and Phase SynchronizationSyncphas Initimmed Syncsour PhaseExample Display Example Voltm Step Syncsour Phase Syncphas InitimmedProgramming Slew Rates Using Slew Rates to Generate WaveformsSlewt Voltm FixedSlew Step SlewmCurrpeak Syncsour Phase SyncphasMeasuring Peak Inrush Current RangeAction Display To set the Gpib address, proceed as follows Setting the Gpib Address and RS-232 ParametersTo configure the RS-232 interface, proceed as follows Saving and Recalling Operating StatesAddress Noutputs Agilent 6814B Agilent 6834B Agilent 6843A SpecificationsTable A-1. Performance Specifications1 Table A-2. Supplemental Characteristics Supplemental CharacteristicsSpecifications a Page Recommended Model CharacteristicsEquipment Required Performing the Verification Tests Test SetupTurn-On Checkout Procedure Action Normal Result Voltage Programming and Measurement AccuracyRMS Current Readback Accuracy Agilent 6843A Current Measurement Accuracy Performing the Calibration ProcedureAgilent 6814B Current Measurement Accuracy Agilent 6834B Current Measurement AccuracyFront Panel Calibration Menu Enable Calibration ModeFront Panel Calibration Calibrating the OVP trip point Calibrating and Entering Voltage Calibration ValuesCalibrating and Entering Current Calibration Values Calpass Changing the Calibration PasswordCalibrating the Output Impedance Agilent 6843A only Saving the Calibration ConstantsAgilent Calibration Program Listing Calibration Error MessagesTable B-3. Gpib Calibration Error Messages Calibration Over the GpibFigure B-2. Calibration Program Listing Sheet 1 Figure B-2. Calibration Program Listing Sheet 2 Page Table C-1. Error Numbers Error Number ListError Messages Error Messages C Page Index Index Index Japan United States Latin AmericaCanada Australia/New Zealand Europe Asia PacificManual Updates
Related manuals
Manual 20 pages 27.01 Kb Manual 187 pages 38.86 Kb

6834B, 6843A, 6814B specifications

Agilent Technologies, a leader in electronic test and measurement equipment, offers a range of powerful signal sources including the 6843A, 6834B, 6814B, 6813B, and 6811B models. These instruments are designed to support various applications in research, development, and manufacturing, providing precise signal generation capabilities.

The Agilent 6843A is a versatile signal generator known for its exceptional frequency range and modulation capabilities. It supports an extensive bandwidth, making it ideal for applications that require high-frequency signal generation. With its superior phase noise performance, the 6843A is an excellent choice for radar, wireless communications, and electronic warfare applications. The instrument features an intuitive user interface, allowing engineers to set parameters quickly and efficiently.

Next, the Agilent 6834B offers exceptional performance characteristics, including high output power and low distortion. This signal generator is particularly noted for its ability to produce complex modulation formats, making it suitable for testing advanced wireless communication systems. With a reliable and stable output, the 6834B ensures accurate and repeatable measurements, which is vital for thorough testing processes.

The 6814B model stands out for its dual-channel capabilities, allowing users to generate simultaneous signals for testing multiple components or systems. This feature significantly enhances testing efficiency and flexibility for engineers. With built-in arbitrary waveform functionality, users can create custom waveforms, making the 6814B suitable for a wide range of applications including device characterization and signal processing research.

For those seeking a more compact solution, the Agilent 6813B provides essential signal generation features without compromising on performance. It is designed for a variety of applications across telecommunications and consumer electronics, featuring a straightforward interface and robust performance metrics.

Lastly, the 6811B is an entry-level yet capable model that supports a broad spectrum of testing needs. Perfect for educational and laboratory environments, it provides essential functionalities required for effective signal generation and analysis.

Overall, Agilent Technologies' 6843A, 6834B, 6814B, 6813B, and 6811B signal generators offer an array of features and technologies that cater to various application needs. Their precision, reliability, and user-oriented designs position them as invaluable assets in any testing environment, ensuring engineers can carry out their work with confidence and accuracy.