Bridging

Part of a bridgeÕs IdentiÞer is based on its MAC address. In most network installations,

TIP performance differences between bridges may be negligible. You may, however, Þnd your data bottle-necked in installations where both a low-performance bridge and a high-performance bridge are attached to the same LAN segment and the two (or more) bridges have the same Priority component set (e.g., at the default 8000 Hex). In such a scenario you may want to alter the Priority component of the higher performance bridge to ensure that it becomes root for the segment (or overall root). Remember, if Priority components are equal, the bridge on the segment with the lowest MAC address would have a better chance of being selected as the root bridgeÑas it would have a lower Bridge IdentiÞer. If your bridges come from multiple vendors, they will have different MAC address values (e.g., Cabletron devices have a lower MAC address than 3Com devices); if they come from the same vendor, the bridge with the earlier manufacture date will have the lower MAC address value.

Root Bridge

Displays the MAC address of the bridge that is currently functioning as the Root Bridge.

Root Cost

Indicates the cost of the data path from this bridge to the Root Bridge. Each port on each bridge adds a ÒcostÓ to a particular path that a frame must travel. For example, if each port in a particular path has a Path Cost of 1, the Root Cost would be a count of the number of bridges along the path. (You can edit the Path Cost of bridge ports as described later.) The Root BridgeÕs Root Cost is 0.

Root Port

This Þeld displays the identiÞer (the physical index number) of the device bridge port that has the lowest cost path to the Root Bridge on the network. If the device is currently the Root Bridge, this Þeld will read 0.

Protocol

Displays the Spanning Tree Algorithm Protocol type the device is currently using. The choices are:

¥802.1

¥DEC (DEC Lanbridge 100)

¥None

The following four Þelds display values used for various Spanning Tree timers that are set at the Root Bridge and this bridge. In Spanning Tree operations, the value used for the tree is the one set at the Root Bridge (with the exception of Hold Time, which is a Þxed value); but you can change the value for each bridge on your network in the event that it becomes Root.

Bridge Spanning Tree

4-37

Page 83
Image 83
Cabletron Systems CSX200, CSX400 manual Root Bridge, Root Cost, Root Port

CSX200, CSX400 specifications

Cabletron Systems was a leading developer of networking solutions, and its CSX400 and CSX200 series of high-performance switches represent some of the key innovations in the field of enterprise networking during their time. Both models were geared towards enhancing network reliability, efficiency, and speed, particularly in environments where heavy data traffic and complex networking demands were prevalent.

The CSX400, designed for larger enterprises, boasts a robust architecture capable of handling significant throughput. One of its standout features is its stackable design, allowing multiple switches to be interconnected and managed seamlessly as a single unit. This scalability provides organizations with the flexibility to expand their networks without significant infrastructure overhauls. The CSX400 supports various Ethernet standards, including 10/100 Ethernet and Gigabit Ethernet, positioning it to effectively manage both legacy and modern networking requirements.

In addition to its scalability, the CSX400 is distinguished by its advanced Layer 2 and Layer 3 routing capabilities. This dual-layer functionality enables efficient data handling and is instrumental in managing traffic between different network segments. Moreover, the switch incorporates features like VLAN (Virtual Local Area Network) support and Quality of Service (QoS) prioritization, allowing for enhanced performance of critical applications and streamlined bandwidth allocation.

On the other hand, the CSX200 series is tailored for smaller enterprises or branch offices needing a reliable yet efficient networking solution. Despite its compact design, the CSX200 is equipped with essential features that promote effective network management and security. It offers a simplified management interface, making it user-friendly for network administrators. The switch also provides essential access control measures, employing technologies like IEEE 802.1X for network access security.

Both the CSX400 and CSX200 prioritize performance through the incorporation of advanced switching technologies. They support features such as Spanning Tree Protocol (STP), enabling loop-free topologies and enhanced network resilience. These attributes are particularly crucial in dynamic networking environments where downtime can have significant repercussions on business operations.

Overall, Cabletron Systems' CSX400 and CSX200 series represent a blend of scalability, advanced routing capabilities, and user-friendly management, making them vital assets for organizations looking to optimize their network infrastructure during a period of rapid technological evolution. With their rich feature sets and unwavering performance, these switches helped pave the way for modern networking solutions that cater to diverse enterprise needs.