2-ProportionZ Interval .... [Interval] - [Two-Prop Z Int]
Calculates the confidence interval for the difference between population proportions based on the difference between two sample proportions.
To specify the data below and perform a 1-SampleZ Interval calculation list1: {299.4, 297.7, 301, 298.9, 300.2, 297}
Population standard deviation: 3
Significance level: 5% ( = confidence level: 95%)

1-SampleZ Interval .... [Interval] - [One-Sample Z Int]

Lower, Upper = o  Z

α

σ

2

 

 

 

 

 

 

 

 

n

 

Calculates the confidence interval for the population mean based on a sample mean and known population standard deviation.

0708

2-SampleZ Interval .... [Interval] - [Two-Sample Z Int]

Lower, Upper = (o1 o2)  Z

 

α

 

 

 

σ

2

σ 2

 

 

 

 

 

 

1

 

+

2

 

 

 

 

 

2

 

 

 

 

n1

 

n2

Calculates the confidence interval for the difference between population means based on the difference

 

 

 

 

 

 

between sample means when the population standard deviations are known.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lower, Upper =

x

 Z

 

 

 

 

 

 

 

 

 

1-ProportionZ Interval .... [Interval] - [One-Prop Z Int]

α

 

 

 

1 x

1

x

 

 

 

 

 

 

 

 

 

 

 

 

 

n

2

 

 

 

n n

 

 

 

n

Calculates the confidence interval for the population proportion based on a single sample proportion.

Lower, Upper

x1 x2  Z n1 n2

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x1

1–

x1

 

x2

1–

x2

 

 

 

 

 

 

 

n1

n1

 

 

 

n2

 

α

 

+

n2

2

 

 

 

 

n1

 

n2

 

 

 

 

 

 

1-Samplet Interval .... [Interval] - [One-Sample t Int]

Lower, Upper = o  tn –1

α

 

sx

2

 

 

 

 

 

 

n

Calculates the confidence interval for the population mean based on a sample mean and a sample standard deviation when the population standard deviation is not known.

2-Samplet Interval .... [Interval] - [Two-Sample t Int]

Calculates the confidence interval for the difference between population means based on the difference between sample means and sample standard deviations when the population standard deviations are not known.

￿ When the two population standard deviations

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lower, Upper = ￿o￿o￿￿ ￿ ￿￿￿￿

 

 

s￿



 





 

are equal (pooled)

 

 

 

￿

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

￿

￿

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s=

(( 1 – 1)s12 + (

2 – 1)s22)/(

 

1 +

 

2 – 2)

￿ When the two population standard deviations

 

 

 

 

 

 

 

α

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s

2

 

 

 

s

2

 

are not equal (not pooled)

 

Lower, Upper = (o1 o2) tdf

 

 

 

 

 

 

 

 

x1

 

+

 

 

 

x2

 

 

2

 

 

 

 

n1

 

 

n2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

df = 1/(C2/(n

1

– 1) + (1 – C)2/(n

2

– 1))

C = (s

2/n

)/(s

 

2/n

1

+ s

 

2/n

)

 

 

 

 

x1 1

 

 

 

x1

 

 

 

x2

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

General Confidence Interval Precautions

If you input a C-Level (confidence level) value in the range of 0 s C-Level < 1, the value you input is used. To specify a C-Level of 95%, for example, input “0.95”.

Chapter 7: Statistics Application

144