Chapter 15 Configuring Security for the ML-Series Card

RADIUS on the ML-Series Card

For more information about these commands, see the “Secure Shell Commands” section in the “Other Security Features” chapter of the Cisco IOS Security Command Reference, Cisco IOS Release 12.2, at this URL:

http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/122cgcr/fsecur_r/fothercr.htm.

RADIUS on the ML-Series Card

RADIUS is a distributed client/server system that secures networks against unauthorized access. Clients send authentication requests to a central RADIUS server, which contains all user authentication and network service access information. The RADIUS host is normally a multiuser system running RADIUS server software from Cisco or another software provider.

Many Cisco products offer RADIUS support, including the ONS 15454, ONS 15454 SDH, ONS 15310-CL, ONS 15310-MA, and ONS 15600. The ML-Series card also supports RADIUS.

The ML-Series card can operate either in RADIUS relay mode or in RADIUS stand alone mode (default). In either mode, the RADIUS messages from the ML-Series card are passed to a RADIUS server that is on the data communications network (DCN) used to manage the ONS node.

RADIUS Relay Mode

In RADIUS relay mode, RADIUS on the ML-Series card is configured by CTC or TL1 and uses the AAA/RADIUS features of the ONS node, which contains the ML-Series card. There is no interaction between RADIUS relay mode and RADIUS standalone mode. For information on ONS node security, refer to the “Security” chapter of the ONS node’s reference manual.

An ML-Series card operating in RADIUS relay mode does need to be specified as a client in the RADIUS server entries. The RADIUS server uses the client entry for the ONS node as a proxy for the ML-Series card.

Enabling relay mode disables the Cisco IOS CLI commands used to configure AAA/RADIUS. The user can still use the Cisco IOS CLI commands not related to AAA/RADIUS.

In relay mode, the ML-Series card shows a RADIUS server host with an IP address that is really the internal IP address of the active timing, communications, and control card (XTC). When the ML-Series card actually sends RADIUS packets to this internal address, the XTC converts the RADIUS packet destination into the real IP address of the RADIUS server. In stand alone mode, the ML-Series card shows the true IP addresses of the RADIUS servers.

When in relay mode with multiple RADIUS server hosts, the ML-Series card IOS CLI show run output also shows the internal IP address of the active XTC card. But since the single IP address now represents multiple hosts, different port numbers are paired with the IP address to distinguish the individual hosts. These ports are from 1860 to 1869, one for each authentication server host configured, and from 1870 to 1879, one for each accounting server host configured.

The single IP address will not match the host IP addresses shown in CTC, which uses the true addresses of the RADIUS server hosts. These same true IP addresses appear in the ML-Series card IOS CLI show run output, when the ML-Series card is in stand alone mode.

Note A user can configure up to 10 servers for either authentication or accounting application, and one server host can perform both authentication and accounting applications.

Cisco ONS 15310-CL and Cisco ONS 15310-MA Ethernet Card Software Feature and Configuration Guide R8.5

15-6

78-18133-01

 

 

Page 200
Image 200
Cisco Systems 15310-MA, 15310-CL manual Radius on the ML-Series Card, Radius Relay Mode, 15-6

15310-CL, 15310-MA specifications

Cisco Systems has established itself as a leader in the networking domain, offering a wide array of solutions to meet the needs of modern businesses. Among its impressive product lineup are the Cisco 15310-CL and 15310-MA routers, designed to provide advanced network performance and reliability.

The Cisco 15310-CL is a versatile platform that primarily serves as a carrier-class router aimed at supporting high-speed data and voice services. It is built to handle the demands of large enterprises and service providers, offering a robust design that ensures maximum uptime and performance. One of its standout features is its modular architecture, which enables users to customize their configurations based on specific application needs. This scalability allows for future expansion without the need for a complete hardware overhaul.

Key technologies integrated into the Cisco 15310-CL include high-density Ethernet interfaces and a comprehensive suite of Layer 2 and Layer 3 protocol support. The device is capable of supporting multiple types of connections, including TDM, ATM, and Ethernet. This flexibility makes it an ideal choice for organizations that require seamless migration between various service types. Moreover, with features such as MPLS (Multiprotocol Label Switching) support and advanced Quality of Service (QoS) mechanisms, the router ensures that critical applications receive the necessary bandwidth and low latency required for optimal performance.

In contrast, the Cisco 15310-MA focuses on access solutions, providing a cost-effective entry point for businesses looking to enhance their network capabilities. It is well-suited for smaller offices or branch locations that need reliable connectivity without the expense and complexity associated with larger systems. The device supports a range of access methods and provides essential features like firewall capabilities, VPN support, and comprehensive security measures to protect sensitive data.

Both models benefit from Cisco's commitment to security and manageability, offering features like enhanced encryption protocols and user authentication mechanisms that help safeguard networks against threats. Additionally, they can be managed through Cisco’s intuitive software tools, simplifying configuration and monitoring tasks for IT administrators.

The Cisco 15310-CL and 15310-MA are ideal solutions for businesses seeking to enhance their network infrastructure, ensuring firms can keep pace with evolving technology demands while maintaining a focus on security and performance. Their combination of advanced features, modular capabilities, and robust support makes them valuable assets in the networking landscape.