Cisco Systems 15310-CL manual Creating the Spanning-Tree Topology, Spanning-Tree Interface States

Models: 15310-CL 15310-MA

1 278
Download 278 pages 31.98 Kb
Page 73
Image 73

Chapter 6 Configuring STP and RSTP on the ML-Series Card

STP Features

Creating the Spanning-Tree Topology

In Figure 6-1, Switch A is elected as the root switch because the switch priority of all the switches is set to the default (32768) and Switch A has the lowest MAC address. However, because of traffic patterns, number of forwarding interfaces, or link types, Switch A might not be the ideal root switch. By increasing the priority (lowering the numerical value) of the ideal switch so that it becomes the root switch, you force a spanning-tree recalculation to form a new topology with the ideal switch as the root.

Figure 6-1 Spanning-Tree Topology

DP

DP

ML-Series

 

ML-Series

 

 

 

 

A

 

 

 

 

 

 

 

D

 

 

 

 

 

 

DP

DP

 

 

 

 

 

RP

 

DP

 

DP

 

 

 

 

 

 

 

 

 

 

RP

 

 

 

 

RP DP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BC

ML-Series ML-Series

RP = root port

DP = designated port

124085

When the spanning-tree topology is calculated based on default parameters, the path between source and destination end stations in a switched network might not be ideal. For instance, connecting higher-speed links to an interface that has a higher number than the root port can cause a root-port change. The goal is to make the fastest link the root port.

Spanning-Tree Interface States

Propagation delays can occur when protocol information passes through a switched LAN. As a result, topology changes can take place at different times and at different places in a switched network. When an interface transitions directly from nonparticipation in the spanning-tree topology to the forwarding state, it can create temporary data loops. Interfaces must wait for new topology information to propagate through the switched LAN before starting to forward frames. They must allow the frame lifetime to expire for forwarded frames that have used the old topology.

Each Layer 2 interface on a switch using spanning tree exists in one of these states:

Blocking—The interface does not participate in frame forwarding.

Listening—The first transitional state after the blocking state when the spanning tree determines that the interface should participate in frame forwarding.

Learning—The interface prepares to participate in frame forwarding.

Forwarding—The interface forwards frames.

Disabled—The interface is not participating in spanning tree because of a shutdown port, no link on the port, or no spanning-tree instance running on the port.

An interface moves through these states:

1.From initialization to blocking

Cisco ONS 15310-CL and Cisco ONS 15310-MA Ethernet Card Software Feature and Configuration Guide R8.5

 

78-18133-01

6-5

 

 

 

Page 73
Image 73
Cisco Systems 15310-CL, 15310-MA manual Creating the Spanning-Tree Topology, Spanning-Tree Interface States

15310-CL, 15310-MA specifications

Cisco Systems has established itself as a leader in the networking domain, offering a wide array of solutions to meet the needs of modern businesses. Among its impressive product lineup are the Cisco 15310-CL and 15310-MA routers, designed to provide advanced network performance and reliability.

The Cisco 15310-CL is a versatile platform that primarily serves as a carrier-class router aimed at supporting high-speed data and voice services. It is built to handle the demands of large enterprises and service providers, offering a robust design that ensures maximum uptime and performance. One of its standout features is its modular architecture, which enables users to customize their configurations based on specific application needs. This scalability allows for future expansion without the need for a complete hardware overhaul.

Key technologies integrated into the Cisco 15310-CL include high-density Ethernet interfaces and a comprehensive suite of Layer 2 and Layer 3 protocol support. The device is capable of supporting multiple types of connections, including TDM, ATM, and Ethernet. This flexibility makes it an ideal choice for organizations that require seamless migration between various service types. Moreover, with features such as MPLS (Multiprotocol Label Switching) support and advanced Quality of Service (QoS) mechanisms, the router ensures that critical applications receive the necessary bandwidth and low latency required for optimal performance.

In contrast, the Cisco 15310-MA focuses on access solutions, providing a cost-effective entry point for businesses looking to enhance their network capabilities. It is well-suited for smaller offices or branch locations that need reliable connectivity without the expense and complexity associated with larger systems. The device supports a range of access methods and provides essential features like firewall capabilities, VPN support, and comprehensive security measures to protect sensitive data.

Both models benefit from Cisco's commitment to security and manageability, offering features like enhanced encryption protocols and user authentication mechanisms that help safeguard networks against threats. Additionally, they can be managed through Cisco’s intuitive software tools, simplifying configuration and monitoring tasks for IT administrators.

The Cisco 15310-CL and 15310-MA are ideal solutions for businesses seeking to enhance their network infrastructure, ensuring firms can keep pace with evolving technology demands while maintaining a focus on security and performance. Their combination of advanced features, modular capabilities, and robust support makes them valuable assets in the networking landscape.