Chapter 11 Configuring Quality of Service on the ML-Series Card

Understanding IP SLA

Depending on the specific IP SLAs operation, statistics of delay, packet loss, jitter, packet sequence, connectivity, path, server response time, and download time are monitored within the Cisco device and stored in both CLI and SNMP MIBs. The packets have configurable IP and application layer options such as source and destination IP address, User Datagram Protocol (UDP)/TCP port numbers, a type of service (ToS) byte (including Differentiated Services Code Point [DSCP] and IP Prefix bits), Virtual Private Network (VPN) routing/forwarding instance (VRF), and URL web address.

IP SLAs uses generated traffic to measure network performance between two networking devices such as routers. IP SLAs starts when the IP SLAs device sends a generated packet to the destination device. After the destination device receives the packet, and depending on the type of IP SLAs operation, the device will respond with time-stamp information for the source to make the calculation on performance metrics. An IP SLAs operation is a network measurement to a destination in the network from the source device using a specific protocol such as UDP for the operation.

Because IP SLA is accessible using SNMP, it also can be used in performance monitoring applications for network management systems (NMSs) such as CiscoWorks2000 (CiscoWorks Blue) and the Internetwork Performance Monitor (IPM). IP SLA notifications also can be enabled through Systems Network Architecture (SNA) network management vector transport (NMVT) for applications such as NetView.

For general IP SLA information, refer to the Cisco IOS IP Service Level Agreements technology page at http://www.cisco.com/warp/public/732/Tech/nmp/ipsla. For information on configuring the Cisco IP SLA feature, see the “Network Monitoring Using Cisco Service Assurance Agent” chapter of the Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.2. at: http://www.cisco.com/en/US/products/sw/iosswrel/ps1835/products_configuration_guide_chapter0918 6a008030c773.html.

IP SLA on the ML-Series

The ML-Series card has a complete IP SLA Cisco IOS subsystem and offers all the normal features and functions available in Cisco IOS Release 12.2S. It uses the standard IP SLA Cisco IOS CLI commands. The SNMP support will be equivalent to the support provided in the IP SLA subsystem 12.2(S), which is the rttMon MIB.

IP SLA Restrictions on the ML-Series

The ML-Series card supports only features in the Cisco IOS 12.2S branch. It does not support functions available in future Cisco IOS versions, such as the IP SLA accuracy feature or the enhanced Cisco IOS CLI support with updated IP SLA nomenclature.

Other restrictions are:

Setting the CoS bits is supported, but set CoS bits are not honored when leaving or entering the CPU when the sender or responder is an ONS 15454, ONS 15454 SDH, ONS 15310-CL, or ONS 15310-MA platform. Set CoS bits are honored in intermediate ONS nodes.

On RPR, the direction of the data flow for the IP SLA packet might differ from the direction of customer traffic.

The system clock on the ML-Series card synchronizes with the clock on the TCC2/TCC2P card. Any NTP server synchronization is done with the TCC2/TCC2P card clock and not with the ML-Series card clock.

 

 

Cisco ONS 15310-CL and Cisco ONS 15310-MA Ethernet Card Software Feature and Configuration Guide R8.5

 

 

 

 

 

 

78-18133-01

 

 

11-31

 

 

 

 

 

Page 157
Image 157
Cisco Systems 15310-CL, 15310-MA manual IP SLA on the ML-Series, IP SLA Restrictions on the ML-Series, 11-31

15310-CL, 15310-MA specifications

Cisco Systems has established itself as a leader in the networking domain, offering a wide array of solutions to meet the needs of modern businesses. Among its impressive product lineup are the Cisco 15310-CL and 15310-MA routers, designed to provide advanced network performance and reliability.

The Cisco 15310-CL is a versatile platform that primarily serves as a carrier-class router aimed at supporting high-speed data and voice services. It is built to handle the demands of large enterprises and service providers, offering a robust design that ensures maximum uptime and performance. One of its standout features is its modular architecture, which enables users to customize their configurations based on specific application needs. This scalability allows for future expansion without the need for a complete hardware overhaul.

Key technologies integrated into the Cisco 15310-CL include high-density Ethernet interfaces and a comprehensive suite of Layer 2 and Layer 3 protocol support. The device is capable of supporting multiple types of connections, including TDM, ATM, and Ethernet. This flexibility makes it an ideal choice for organizations that require seamless migration between various service types. Moreover, with features such as MPLS (Multiprotocol Label Switching) support and advanced Quality of Service (QoS) mechanisms, the router ensures that critical applications receive the necessary bandwidth and low latency required for optimal performance.

In contrast, the Cisco 15310-MA focuses on access solutions, providing a cost-effective entry point for businesses looking to enhance their network capabilities. It is well-suited for smaller offices or branch locations that need reliable connectivity without the expense and complexity associated with larger systems. The device supports a range of access methods and provides essential features like firewall capabilities, VPN support, and comprehensive security measures to protect sensitive data.

Both models benefit from Cisco's commitment to security and manageability, offering features like enhanced encryption protocols and user authentication mechanisms that help safeguard networks against threats. Additionally, they can be managed through Cisco’s intuitive software tools, simplifying configuration and monitoring tasks for IT administrators.

The Cisco 15310-CL and 15310-MA are ideal solutions for businesses seeking to enhance their network infrastructure, ensuring firms can keep pace with evolving technology demands while maintaining a focus on security and performance. Their combination of advanced features, modular capabilities, and robust support makes them valuable assets in the networking landscape.