Chapter 6 Configuring STP and RSTP on the ML-Series Card

STP Features

Message age

Identifier of the sending interface

Values for the hello, forward delay, and max-age protocol timers

When a switch receives a configuration BPDU that contains superior information (lower bridge ID, lower path cost, etc.), it stores the information for that port. If this BPDU is received on the root port of the switch, the switch also forwards it with an updated message to all attached LANs for which it is the designated switch.

If a switch receives a configuration BPDU that contains inferior information to that currently stored for that port, it discards the BPDU. If the switch is a designated switch for the LAN from which the inferior BPDU was received, it sends that LAN a BPDU containing the up-to-date information stored for that port. In this way, inferior information is discarded, and superior information is propagated on the network.

A BPDU exchange results in these actions:

One switch in the network is elected as the root switch.

A root port is selected for each switch (except the root switch). This port provides the best path (lowest cost) when the switch forwards packets to the root switch.

The shortest distance to the root switch is calculated for each switch based on the path cost.

A designated switch for each LAN segment is selected. The designated switch incurs the lowest path cost when forwarding packets from that LAN to the root switch. The port through which the designated switch is attached to the LAN is called the designated port.

Interfaces included in the spanning-tree instance are selected. Root ports and designated ports are put in the forwarding state.

All interfaces not included in the spanning tree are blocked.

Election of the Root Switch

All switches in the Layer 2 network participating in the spanning tree gather information about other switches in the network through an exchange of BPDU data messages. This exchange of messages results in these actions:

Election of a unique root switch for each spanning-tree instance

Election of a designated switch for every switched LAN segment

Removal of loops in the switched network by blocking Layer 2 interfaces connected to redundant links

For each VLAN, the switch with the highest switch priority (the lowest numerical priority value) is elected as the root switch. If all switches are configured with the default priority (32768), the switch with the lowest MAC address in the VLAN becomes the root switch. The switch priority value occupies the most significant bits of the bridge ID.

When you change the switch priority value, you change the probability that the switch will be elected as the root switch. Configuring a higher value decreases the probability; a lower value increases the probability.

The root switch is the logical center of the spanning-tree topology in a switched network. All paths that are not needed to reach the root switch from anywhere in the switched network are placed in the spanning-tree blocking mode.

Cisco ONS 15310-CL and Cisco ONS 15310-MA Ethernet Card Software Feature and Configuration Guide R8.5

 

78-18133-01

6-3

 

 

 

Page 71
Image 71
Cisco Systems 15310-CL, 15310-MA manual Election of the Root Switch

15310-CL, 15310-MA specifications

Cisco Systems has established itself as a leader in the networking domain, offering a wide array of solutions to meet the needs of modern businesses. Among its impressive product lineup are the Cisco 15310-CL and 15310-MA routers, designed to provide advanced network performance and reliability.

The Cisco 15310-CL is a versatile platform that primarily serves as a carrier-class router aimed at supporting high-speed data and voice services. It is built to handle the demands of large enterprises and service providers, offering a robust design that ensures maximum uptime and performance. One of its standout features is its modular architecture, which enables users to customize their configurations based on specific application needs. This scalability allows for future expansion without the need for a complete hardware overhaul.

Key technologies integrated into the Cisco 15310-CL include high-density Ethernet interfaces and a comprehensive suite of Layer 2 and Layer 3 protocol support. The device is capable of supporting multiple types of connections, including TDM, ATM, and Ethernet. This flexibility makes it an ideal choice for organizations that require seamless migration between various service types. Moreover, with features such as MPLS (Multiprotocol Label Switching) support and advanced Quality of Service (QoS) mechanisms, the router ensures that critical applications receive the necessary bandwidth and low latency required for optimal performance.

In contrast, the Cisco 15310-MA focuses on access solutions, providing a cost-effective entry point for businesses looking to enhance their network capabilities. It is well-suited for smaller offices or branch locations that need reliable connectivity without the expense and complexity associated with larger systems. The device supports a range of access methods and provides essential features like firewall capabilities, VPN support, and comprehensive security measures to protect sensitive data.

Both models benefit from Cisco's commitment to security and manageability, offering features like enhanced encryption protocols and user authentication mechanisms that help safeguard networks against threats. Additionally, they can be managed through Cisco’s intuitive software tools, simplifying configuration and monitoring tasks for IT administrators.

The Cisco 15310-CL and 15310-MA are ideal solutions for businesses seeking to enhance their network infrastructure, ensuring firms can keep pace with evolving technology demands while maintaining a focus on security and performance. Their combination of advanced features, modular capabilities, and robust support makes them valuable assets in the networking landscape.