Configuring Virtual Port Channels

Per-VLAN Consistency Check

Per-VLAN Consistency Check

Beginning with Cisco NX-OS Release 5.0(2)N2(1), some Type-1 consistency checks are performed on a per-VLAN basis when spanning tree is enabled or disabled on a VLAN. VLANs that do not pass the consistency check are brought down on both the primary and secondary switches while other VLANs are not affected.

vPC Auto-Recovery

Beginning with Cisco NX-OS Release 5.0(2)N2(1), the vPC auto-recovery feature re-enables vPC links in the following scenarios:

When both vPC peer switches reload and only one switch reboots, auto-recovery allows that switch to assume the role of the primary switch and the vPC links will be allowed to come up after a predetermined period of time. The reload delay period in this scenario can range from 240-3600 seconds.

When vPCs are disabled on a secondary vPC switch due to a peer-link failure and then the primary vPC switch fails or is unable to forward traffic, the secondary switch re-enables the vPCs. In this scenario, the vPC waits for three consecutive keep-alive failures to recover the vPC links.

The vPC auto-recovery feature is disabled by default.

vPC Peer Links

A vPC peer link is the link that is used to synchronize the states between the vPC peer devices.

Note You must configure the peer-keepalive link before you configure the vPC peer link or the peer link will not come up.

vPC Peer Link Overview

You can have only two switches as vPC peers; each switch can serve as a vPC peer to only one other vPC peer. The vPC peer switches can also have non-vPC links to other switches.

To make a valid configuration, you configure an EtherChannel on each switch and then configure the vPC domain. You assign the EtherChannel on each switch as a peer link. For redundancy, we recommend that you should configure at least two dedicated ports into the EtherChannel; if one of the interfaces in the vPC peer link fails, the switch automatically falls back to use another interface in the peer link.

Note We recommend that you configure the EtherChannels in trunk mode.

Many operational parameters and configuration parameters must be the same in each switch connected by a vPC peer link. Because each switch is completely independent on the management plane, you must ensure that the switches are compatible on the critical parameters. vPC peer switches have separate control planes. After configuring the vPC peer link, you should display the configuration on each vPC peer switch to ensure that the configurations are compatible.

 

Cisco Nexus 5000 Series NX-OS Interfaces Configuration Guide, Release 5.2(1)N1(1)

74

78-26881-OL

Page 86
Image 86
Cisco Systems N5KC5596TFA manual Per-VLAN Consistency Check, VPC Auto-Recovery, VPC Peer Links, VPC Peer Link Overview

N5KC5596TFA specifications

The Cisco Systems N5KC5596TFA is a high-performance data center switch designed specifically for modern architectures requiring low-latency, high-bandwidth connectivity. As part of the Nexus 5000 series, the N5KC5596TFA addresses the needs of virtualized environments, cloud computing, and highly dynamic workloads, making it an essential choice for enterprises and service providers.

One of the standout features of the N5KC5596TFA is its impressive port density. The switch offers 48 10 Gigabit Ethernet (10GbE) ports and 4 40 Gigabit Ethernet (40GbE) uplinks, providing flexibility to connect a variety of devices and ensuring high throughput across the network. This port configuration is ideal for connecting multiple servers and storage devices, making it perfect for environments with significant data traffic.

The switch supports a range of advanced technologies such as Virtual Extensible LAN (VXLAN) for improving scalability and multi-tenancy in data center networks. VXLAN encapsulates Layer 2 Ethernet frames within Layer 4 UDP packets, allowing for a larger address space and effective overlay networking, which is crucial for cloud deployments.

Another notable aspect of the N5KC5596TFA is its support for Data Center Bridging (DCB), which enhances the reliability and performance of Ethernet networks. DCB features like Priority Flow Control (PFC) and Enhanced Transmission Selection (ETS) help to minimize data loss and ensure Quality of Service (QoS) for various types of traffic, including storage and regular data, which is critical in a converged infrastructure.

Security is also a priority with the N5KC5596TFA, as it comes equipped with features such as Access Control Lists (ACLs) and port security, helping to safeguard the network from unauthorized access and potential threats.

In terms of management, the switch offers integration with Cisco's Data Center Network Manager (DCNM), providing tools for monitoring, management, and automation, which simplifies operational tasks. Additionally, it supports Cisco's Application Centric Infrastructure (ACI), enabling a more comprehensive and application-focused approach to networking.

Overall, the Cisco Systems N5KC5596TFA is engineered for organizations looking to build robust, highly efficient, and secure data center environments. Its combination of high density, versatile connectivity options, and advanced networking technologies makes it a powerful solution for meeting the demands of today’s enterprise workloads.