Configuring Layer 3 Interfaces

Subinterfaces

You can assign an IP address to the port, enable routing, and assign routing protocol characteristics to this routed interface.

You can assign a static MAC address to a Layer 3 interface. For information on configuring MAC addresses, see the Layer 2 Switching Configuration Guide for your device.

You can also create a Layer 3 port channel from routed interfaces.

Routed interfaces and subinterfaces support exponentially decayed rate counters. Cisco NX-OS tracks the following statistics with these averaging counters:

Input packets/sec

Output packets/sec

Input bytes/sec

Output bytes/sec

Subinterfaces

You can create virtual subinterfaces on a parent interface configured as a Layer 3 interface. A parent interface can be a physical port or a port channel.

Subinterfaces divide the parent interface into two or more virtual interfaces on which you can assign unique Layer 3 parameters such as IP addresses and dynamic routing protocols. The IP address for each subinterface should be in a different subnet from any other subinterface on the parent interface.

You create a subinterface with a name that consists of the parent interface name (for example, Ethernet 2/1) followed by a period and then by a number that is unique for that subinterface. For example, you could create a subinterface for Ethernet interface 2/1 named Ethernet 2/1.1 where .1 indicates the subinterface.

Cisco NX-OS enables subinterfaces when the parent interface is enabled. You can shut down a subinterface independent of shutting down the parent interface. If you shut down the parent interface, Cisco NX-OS shuts down all associated subinterfaces as well.

One use of subinterfaces is to provide unique Layer 3 interfaces to each VLAN that is supported by the parent interface. In this scenario, the parent interface connects to a Layer 2 trunking port on another device. You configure a subinterface and associate the subinterface to a VLAN ID using 802.1Q trunking.

The following figure shows a trunking port from a switch that connects to router B on interface E 2/1. This interface contains three subinterfaces that are associated with each of the three VLANs that are carried by the trunking port.

Figure 2: Subinterfaces for VLANs

 

Cisco Nexus 5000 Series NX-OS Interfaces Configuration Guide, Release 5.2(1)N1(1)

34

78-26881-OL

Page 46
Image 46
Cisco Systems N5KC5596TFA manual Subinterfaces for VLANs

N5KC5596TFA specifications

The Cisco Systems N5KC5596TFA is a high-performance data center switch designed specifically for modern architectures requiring low-latency, high-bandwidth connectivity. As part of the Nexus 5000 series, the N5KC5596TFA addresses the needs of virtualized environments, cloud computing, and highly dynamic workloads, making it an essential choice for enterprises and service providers.

One of the standout features of the N5KC5596TFA is its impressive port density. The switch offers 48 10 Gigabit Ethernet (10GbE) ports and 4 40 Gigabit Ethernet (40GbE) uplinks, providing flexibility to connect a variety of devices and ensuring high throughput across the network. This port configuration is ideal for connecting multiple servers and storage devices, making it perfect for environments with significant data traffic.

The switch supports a range of advanced technologies such as Virtual Extensible LAN (VXLAN) for improving scalability and multi-tenancy in data center networks. VXLAN encapsulates Layer 2 Ethernet frames within Layer 4 UDP packets, allowing for a larger address space and effective overlay networking, which is crucial for cloud deployments.

Another notable aspect of the N5KC5596TFA is its support for Data Center Bridging (DCB), which enhances the reliability and performance of Ethernet networks. DCB features like Priority Flow Control (PFC) and Enhanced Transmission Selection (ETS) help to minimize data loss and ensure Quality of Service (QoS) for various types of traffic, including storage and regular data, which is critical in a converged infrastructure.

Security is also a priority with the N5KC5596TFA, as it comes equipped with features such as Access Control Lists (ACLs) and port security, helping to safeguard the network from unauthorized access and potential threats.

In terms of management, the switch offers integration with Cisco's Data Center Network Manager (DCNM), providing tools for monitoring, management, and automation, which simplifies operational tasks. Additionally, it supports Cisco's Application Centric Infrastructure (ACI), enabling a more comprehensive and application-focused approach to networking.

Overall, the Cisco Systems N5KC5596TFA is engineered for organizations looking to build robust, highly efficient, and secure data center environments. Its combination of high density, versatile connectivity options, and advanced networking technologies makes it a powerful solution for meeting the demands of today’s enterprise workloads.