EGPWS LINE MAINTENANCE MANUAL

2.2.6.1 EXCESSIVE BANK ANGLE CALLOUT

The Bank Angle Callout feature provides callout enunciation for excessive bank angles based on altitude and bank angle limits defined by aircraft type. It is intended to enhance situational awareness during intentional or unintentional maneuvering, and for protection against wing or engine strikes when close to the runway.

When the bank angle limit is reached, the aural callout “BANK ANGLE, BANK ANGLE” is given. Follow-on aural messages are only provided when the aircraft roll angle increases an additional 20% from the previous callout. Bank Angle Callouts are enabled by the installation configuration.

2.2.6.2 TAIL STRIKE CALLOUT

A tail strike alert function is provided by the MK XXII for applicable rotary wing aircraft based upon Radio Altitude, Pitch Attitude, Pitch Rate and Barometric Altitude Rate. The voice message “Tail Too Low “ is provided continuously while within the alert boundary. Unique alert boundaries are provided for applicable aircraft types.

2.2.7 MODE 7 - WINDSHEAR DETECTION (OPTIONAL FOR MK V/VII ONLY)

Mode 7 provides the flight crew with visual and aural alerts for windshear of sufficient magnitude to be potentially hazardous to the aircraft. The system is capable of detecting severe decreasing performance shears (i.e. increasing tailwind/decreasing headwind and/or downdraft) which present an immediate danger to the aircraft. The system is also capable of detecting severe increasing performance shears (increasing headwind/decreasing tailwind and/or up draft). While these shears may not present an immediate danger to the aircraft, these shears can indicate that the atmospheric instability is such that an encounter with a severe decreasing performance shear is likely.

A detected increasing performance shear will result in an aural “CAUTION WINDSHEAR” enunciation and cockpit light annunciation when enabled. A detected decreasing performance shear will result in an aural siren followed by “WINDSHEAR, WINDSHEAR, WINDSHEAR” with a corresponding cockpit warning light annunciation.

2.2.8 ENVELOPE MODULATION (NOT AVAILABLE IN MK VI/VIII -001)

Envelope Modulation provides improved alert protection and expanded alerting margins at identified key locations throughout the world. Due to terrain features at or near certain specific airports, normal operations have resulted in nuisance or missed alerts at these locations in the past. With the introduction of accurate position information and a terrain and airport database, it is now possible to identify these areas and adjust the normal alerting process to compensate for the condition.

Modes 4, 5, and 6 are expanded at certain locations to provide alerting protection consistent with normal approaches. Modes 1, 2, and 4 are desensitized at other locations to prevent nuisance alerts that result from unusual terrain or approach procedures. In all cases, very specific information is used to correlate the aircraft position and phase of flight prior to modulating the envelopes. This function is automatic and transparent to crew operation.

2.2.9 TERRAIN CLEARANCE FLOOR AND RUNWAY FIELD CLEARANCE FLOOR

The Terrain Clearance Floor (TCF) alerting function adds an additional element of protection to the standard Ground Proximity Warning System for fixed-wing aircraft. It creates an increasing terrain clearance envelope around the airport runway to provide CFIT protection against situations where Mode 4 provides limited or no protection. TCF alerts are based on current aircraft location, destination runway center point position, and Radio Altitude (altitude AGL). TCF is active during takeoff, cruise, and final approach. TCF complements the existing Mode 4 protection by providing an alert based on insufficient terrain clearance even when in landing configuration.

The TCF function is enhanced in all fixed-wing models (beginning with release –210-210 for the MK V/VII) with the addition of a Runway Field Clearance Floor (RFCF) alerting function. RFCF is based on current aircraft location, destination runway center point position, and Geometric Altitude or altitude Above Sea Level (ASL) relative to the destination runway. RFCF provides short landing protection for runways that are significantly higher than the surrounding terrain.

CAGE CODE: 97896

SCALE: NONE SIZE: A DWG NO.: 060-4199-180

REV: G

SHEET 14 of 68

Page 14
Image 14
Honeywell Excessive Bank Angle Callout, Tail Strike Callout, Mode 7 Windshear Detection Optional for MK V/VII only

MK VIII, MK V, MK XXII, MK VII, MK VI specifications

Honeywell's range of control systems, particularly the MK VI, MK VIII, MK VII, V, and XXII, are pivotal innovations that have revolutionized process automation and control in various industries, especially in power generation and oil and gas sectors. Each of these systems comes with unique features and technologies to enhance operational efficiency, safety, and reliability.

The Honeywell MK VI control system is renowned for its ability to provide effective plant control and management tools, featuring advanced operator interfaces and robust hardware components. It employs a modular design, which allows for easy scalability and integration into existing infrastructure. The MK VI is equipped with Ethernet-based communication protocols, ensuring high-speed data transfer and enabling seamless connectivity with other systems.

The MK VIII system takes automation a step further, emphasizing enhanced performance and reliability. With its built-in redundancy and advanced diagnostics, the MK VIII minimizes downtime and optimizes maintenance efforts. Its powerful software tools are designed to improve operator decision-making, providing critical insights into plant operations and trends.

Honeywell’s MK VII control system is designed for high-performance applications, especially in gas turbine environments. It features advanced control algorithms, enabling precise control of emissions and improving overall efficiency. The MK VII stands out with its ability to maintain optimal performance under varying load conditions, ensuring reliability in challenging operational scenarios.

The MK V system is one of Honeywell's legacy products, known for its simple and user-friendly interface. Despite its age, it continues to be a dependable choice for many plants. It offers solid performance with basic control functions and has been a reliable backbone for older facilities transitioning into newer technologies.

Lastly, the MK XXII brings a modern twist to control systems with its focus on cybersecurity and data analytics. This system takes advantage of big data and IoT technologies, providing enhanced visibility of operations through real-time monitoring and predictive maintenance capabilities. The MK XXII ensures that plants not only operate efficiently but also mitigate risks associated with cyber threats.

Overall, Honeywell's series of control systems showcases their commitment to innovation and reliability in process automation, catering to the diverse needs of contemporary industrial environments. Each system is designed with specific features and capabilities that address the evolving challenges of process control, ensuring that users can achieve optimal performance and safety in their operations.