EGPWS LINE MAINTENANCE MANUAL

2.1.1 ENHANCED GROUND PROXIMITY WARNING COMPUTER (EGPWC)

All EGPWS functions are processed by a single Line Replaceable Unit (LRU) called the Enhanced Ground Proximity Warning Computer (EGPWC).

The MK V and MK VII EGPWC are digitally controlled computers housed in a 2 MCU ARINC 600-6 form factor chassis intended for Air Transport type aircraft. Installation configuration is defined by program pin strapping in the aircraft.

The MK VI and MK VIII EGPWC are digitally controlled computers housed in a non-ARINC form factor chassis intended for Business and General Aviation and Regional Turboprop type aircraft. These models have fewer interface and functional options. The installation configuration is defined in a programmed Configuration Module installed in the aircraft.

The MK XXII EGPWC is a digitally controlled computer housed in a non-ARINC form factor chassis intended for various rotorcraft. Similar to the MK VI and MK VIII EGPWC, this model has fewer interface and functional options. The installation configuration is defined in a programmed Configuration Module installed in the helicopter.

The EGPWC receives information in AC, DC, discrete, and synchro analog formats, and RS-232, RS-422, ARINC 429 or ARINC 575 digital formats. Discrete signals can be either ground or +28V discretes. The EGPWC provides discrete, audio and ARINC 429 outputs for alerts and system status, and video (ARINC 453/708) for terrain display. The EGPWC is rack mounted and does not require any forced air cooling when operated within the normal operating temperature range given in the Table 1-1.

2.2 OPERATION

2.2.1 MODE 1 – EXCESSIVE DESCENT RATE

Mode 1 provides audio and visual alerts for excessive descent rates into terrain. When the EGPWS caution alert envelope is penetrated, the message “SINKRATE” is enunciated and EGPWS alert lights illuminate. Continuing the excessive descent rate into the EGPWS warning alert envelope results in a “PULL-UP” enunciation and EGPWS alert lights illuminated. Mode 1 is desensitized to eliminate unwanted (nuisance) alerts when the EGPWS determines that the aircraft is above a Glideslope beam. In some fixed-wing applications, Mode 1 is also desensitized when Steep Approach or Flap Override is active. In helicopter applications, Mode 1 is disabled when autorotation is detected.

2.2.2 MODE 2A/2B - TERRAIN CLOSURE RATE

Mode 2 provides audio and visual alerts for dangerously high terrain closure rates. Two sub-modes, referred to as Mode 2A and 2B, are defined. Mode 2A is active when flaps are not in the landing position and the aircraft is not on an ILS approach within ± 2 dots of glideslope center. Mode 2B is active when the flaps are in the landing position or while on an ILS approach within ± 2 dots of glideslope deviation. When the caution alert envelope is penetrated, the message “TERRAIN, TERRAIN” is enunciated and EGPWS alert lights illuminate. Continuing the high terrain closure rate into the warning alert envelope results in a “PULL-UP” enunciation and EGPWS alert lights illuminated.

2.2.3 MODE 3 - DESCENT AFTER TAKEOFF

Mode 3 provides audio and visual alerts for excessive altitude loss after takeoff, or after a go-around from below 245 feet above ground level (AGL), when flaps and gear are not in the landing configuration. Penetrating the Mode 3 alert envelope causes the voice message “DON’T SINK, DON’T SINK” and illumination of EGPWS alert lights.

2.2.4 MODE 4A/4B/4C - UNSAFE TERRAIN CLEARANCE

Mode 4 provides audio and visual alerts for unsafe terrain clearance with respect to phase of flight, height above ground, and speed. Three sub-modes, referred to as Mode 4A, 4B, and 4C, are defined. Mode 4A is active during cruise and approach with landing gear up. Mode 4B is active during cruise and approach with landing gear down and flaps up. Mode 4C is active during takeoff when either gear or flaps are not in the landing configuration. The aural enunciations for Mode 4A are “TOO LOW TERRAIN” or “TOO LOW GEAR” depending on airspeed. Mode 4B

CAGE CODE: 97896

SCALE: NONE SIZE: A DWG NO.: 060-4199-180

REV: G

SHEET 11 of 68

Page 11
Image 11
Honeywell MK VIII, MK XXII manual Enhanced Ground Proximity Warning Computer Egpwc, Operation Mode 1 Excessive Descent Rate

MK VIII, MK V, MK XXII, MK VII, MK VI specifications

Honeywell's range of control systems, particularly the MK VI, MK VIII, MK VII, V, and XXII, are pivotal innovations that have revolutionized process automation and control in various industries, especially in power generation and oil and gas sectors. Each of these systems comes with unique features and technologies to enhance operational efficiency, safety, and reliability.

The Honeywell MK VI control system is renowned for its ability to provide effective plant control and management tools, featuring advanced operator interfaces and robust hardware components. It employs a modular design, which allows for easy scalability and integration into existing infrastructure. The MK VI is equipped with Ethernet-based communication protocols, ensuring high-speed data transfer and enabling seamless connectivity with other systems.

The MK VIII system takes automation a step further, emphasizing enhanced performance and reliability. With its built-in redundancy and advanced diagnostics, the MK VIII minimizes downtime and optimizes maintenance efforts. Its powerful software tools are designed to improve operator decision-making, providing critical insights into plant operations and trends.

Honeywell’s MK VII control system is designed for high-performance applications, especially in gas turbine environments. It features advanced control algorithms, enabling precise control of emissions and improving overall efficiency. The MK VII stands out with its ability to maintain optimal performance under varying load conditions, ensuring reliability in challenging operational scenarios.

The MK V system is one of Honeywell's legacy products, known for its simple and user-friendly interface. Despite its age, it continues to be a dependable choice for many plants. It offers solid performance with basic control functions and has been a reliable backbone for older facilities transitioning into newer technologies.

Lastly, the MK XXII brings a modern twist to control systems with its focus on cybersecurity and data analytics. This system takes advantage of big data and IoT technologies, providing enhanced visibility of operations through real-time monitoring and predictive maintenance capabilities. The MK XXII ensures that plants not only operate efficiently but also mitigate risks associated with cyber threats.

Overall, Honeywell's series of control systems showcases their commitment to innovation and reliability in process automation, catering to the diverse needs of contemporary industrial environments. Each system is designed with specific features and capabilities that address the evolving challenges of process control, ensuring that users can achieve optimal performance and safety in their operations.