Functional Description

The presence of the MC68230 can be determined by reading address

$FFF45C00. If a timeout error occurs, then the board is an MVME166 and and the MC68230 is present. If a timeout does not occur, then the board is an MVME167/187 and the MC68230 is not present. The local bus timeout timer in the VMEchip2 must be enabled for this test.

The MC68230 may be used for general purpose I/O when the MVME166 is not used with the MVME712 family of transition modules. Because the outputs are unbuffered and unprotected, these signals should be used with caution.

The port A signal lines PA<7..0> are connected to the front panel connector J9. The port A signal lines can be programmed as inputs or outputs. The port B signal lines PB<3..0> are connected to the port H signal lines H<4..1> and the front panel connector J9. This allows these four lines to be inputs or outputs or receive interrupts. The port B signal line PB<7> is also connected to the front panel connector J9. When used with the MVME712 family of transition modules, the PB<7> signal line is used to read the configuration of the serial ports. Timer interrupts from the MC68230 are not supported on the MVME166. The MC68230 is connected to a 10 MHz clock. The PC0 bit in the MC68230 PI/T chip must be low to enable writes to Flash memory.

Parallel Port Interface

The PCCchip2 provides an 8-bit bidirectional parallel port. All eight bits of the port must be either inputs or outputs (no individual selection). In addition to the 8 bits of data, there are two control pins and five status pins. Each of the status pins can generate an interrupt to the MPU in any of the following programmable conditions: high level, low level, high-to-low transition, or low-to-high transition. This port may be used as a Centronics-compatible parallel printer port or as a general parallel I/O port.

When used as a parallel printer port, the five status pins function as: Printer Acknowledge (ACK), Printer Fault (FAULT*), Printer Busy (BSY), Printer Select (SELECT), and Printer Paper Error (PE); while the control pins act as Printer Strobe (STROBE*), and Input Prime (INP*).

The PCCchip2 provides an auto-strobe feature similar to that of the MVME147 PCC. In auto-strobe mode, after a write to the Printer Data Register, the PCCchip2 automatically asserts the STROBE* pin for a selected time specified by the Printer Fast Strobe control bit. In manual mode, the Printer Strobe control bit directly controls the state of the STROBE* pin.

Ethernet Interface

The 82596CA is used to implement the Ethernet transceiver interface. The 82596CA accesses local RAM using DMA operations to perform its normal functions. Because the 82596CA has small internal buffers and the VMEbus has an undefined latency period, buffer overrun may occur if the DMA is programmed to access the VMEbus. Therefore, the 82596CA should not be programmed to access the VMEbus or VSB.

1

MVME166IG/D2

1-15

Page 29
Image 29
Motorola MVME166IG/D2, MVME166D2 manual Parallel Port Interface, Ethernet Interface

MVME166IG, MVME166D2, MVME166IG/D2 specifications

The Motorola MVME166IG/D2 is a pioneering embedded computer designed for high-performance applications in industrial and telecom sectors. This versatile computing platform is based on the PowerPC architecture, which ensures efficient processing capabilities and transfer of data, making it suitable for a wide range of applications, including real-time control, data acquisition, and system monitoring.

One of the main features of the MVME166IG/D2 is its powerful processor. The system is equipped with a PowerPC 603e processor, which offers a remarkable performance rate with a clock speed of up to 250 MHz. This high-speed processing capability allows for rapid data handling and processing, which is critical for demanding applications in real-time environments.

The MVME166IG/D2 also stands out due to its modular design. It supports multiple expansion slots that make it adaptable for different user needs. The system can accommodate additional cards or memory modules, allowing for increased versatility and capability in various operational scenarios.

In terms of connectivity, this embedded computer includes multiple communication interfaces such as Ethernet and serial ports, which facilitate seamless data transfer and communication within larger systems. This connectivity is crucial for integrating the device into existing industrial networks or for connecting with sensors and other equipment.

Another noteworthy characteristic of the MVME166IG/D2 is its robust build quality, which is essential for operation in challenging environments. The device is designed to endure high levels of shock and vibration, making it suitable for deployment in applications such as transportation or heavy machinery.

Additionally, the MVME166IG/D2 offers a range of software support which includes various real-time operating systems. This compatibility allows developers to choose the OS that best fits their application's requirements, enhancing the overall utility of the system.

In summary, the Motorola MVME166IG/D2 is a powerful, flexible embedded computing solution that excels in performance, modularity, and reliability. Its advanced features and durable design make it an ideal choice for industries that require precision, speed, and robustness in their computing solutions.