EDS-510A Series User’s Manual

Featured Functions

LAN Segment 1

 

Port 1 (Designated Bridge Port)

Bridge A

Port 2

(Root Bridge)

Port 1

(Root Port)

Cost =100

Bridge B

Port 2 (Designated Bridge Port)

Port 1

(Root Port)

Cost =100

Bridge X

Port 2 (Blocked Port)

LAN Segment 2

Port 1

(Root Port)

Cost =100

Bridge C

Port 2 (Designated Bridge Port)

Port 1

(Root Port)

Cost =200

Bridge Y

Port 2 (Blocked Port)

LAN Segment 3

yBridge A has been selected as the Root Bridge, since it was determined to have the lowest Bridge Identifier on the network.

ySince Bridge A is the Root Bridge, it is also the Designated Bridge for LAN segment 1. Port 1 on Bridge A is selected as the Designated Bridge Port for LAN Segment 1.

yPorts 1 of Bridges B, C, X, and Y are all Root Ports sine they are nearest to the Root Bridge, and therefore have the most efficient path.

yBridges B and X offer the same Root Path Cost for LAN segment 2. However, Bridge B was selected as the Designated Bridge for that segment since it has a lower Bridge Identifier. Port 2 on Bridge B is selected as the Designated Bridge Port for LAN Segment 2.

yBridge C is the Designated Bridge for LAN segment 3, because it has the lowest Root Path Cost for LAN Segment 3:

¾The route through Bridges C and B costs 200 (C to B=100, B to A=100)

¾The route through Bridges Y and B costs 300 (Y to B=200, B to A=100)

yThe Designated Bridge Port for LAN Segment 3 is Port 2 on Bridge C.

Using STP on a Network with Multiple VLANs

IEEE Std 802.1D, 1998 Edition, does not take into account VLANs when calculating STP information—the calculations only depend on the physical connections. Consequently, some network configurations will result in VLANs being subdivided into a number of isolated sections by the STP system. You must ensure that every VLAN configuration on your network takes into account the expected STP topology and alternative topologies that may result from link failures.

The following figure shows an example of a network that contains VLANs 1 and 2. The VLANs are connected using the 802.1Q-tagged link between Switch B and Switch C. By default, this link has a port cost of 100 and is automatically blocked because the other Switch-to-Switch connections have a port cost of 36 (18+18). This means that both VLANs are now subdivided—VLAN 1 on Switch units A and B cannot communicate with VLAN 1 on Switch C, and VLAN 2 on Switch units A and C cannot communicate with VLAN 2 on Switch B.

3-28

Page 43
Image 43
Moxa Technologies EDS-510A, Moxa EtherDevice Switch user manual Using STP on a Network with Multiple VLANs

EDS-510A, Moxa EtherDevice Switch specifications

Moxa Technologies is a leader in providing innovative networking solutions for industrial applications, and one of its standout products is the Moxa EtherDevice Switch, EDS-510A. This robust, managed Ethernet switch is specifically designed for reliable performance in challenging industrial environments, making it an ideal choice for various applications, including automation, transportation, and power generation.

The EDS-510A features five 10/100Base-TX Fast Ethernet ports, allowing flexibility in connecting multiple devices. Additionally, it offers two Gigabit Ethernet ports for uplink, enabling high-speed connections to aggregation switches or routers. The switch supports both redundant power inputs and a wide operating temperature range of -40 to 75 degrees Celsius, ensuring continuity of service even in extreme conditions.

One of the key features of the EDS-510A is its support for IEEE 802.3at PoE (Power over Ethernet). This technology allows the switch to deliver power to connected devices such as IP cameras and wireless access points through the Ethernet cable, which simplifies installation and reduces the need for additional power sources. This is especially beneficial in remote locations where power availability may be limited.

The EDS-510A is also equipped with advanced management features that include VLAN support, port mirroring, and QoS (Quality of Service) capabilities. These features enhance network performance and security, enabling users to prioritize critical traffic and segment the network for better control. Moreover, it supports SNMP (Simple Network Management Protocol), allowing for easy integration into existing network management systems.

Another notable characteristic is the switch's rugged design. With a metal housing that provides excellent EMI (Electromagnetic Interference) protection, the EDS-510A can withstand harsh industrial environments. It is also compliant with various industrial standards, reinforcing its suitability for mission-critical applications.

In summary, the Moxa EtherDevice Switch, EDS-510A, is engineered to meet the demands of modern industrial networking. With its combination of PoE capability, advanced management features, and rugged design, it ensures reliable and efficient network performance, making it an excellent choice for organizations looking to enhance their industrial networking infrastructure. Whether deployed in factories, transportation systems, or utility environments, the EDS-510A continues to be a trusted solution for numerous applications.