4.2. A SIMPLE FLEXIBLE STRUCTURE EXAMPLE 163
-3.5543e+02 -3.5543e+02 5.0265e+02 0.7071
-3.5543e+02 3.5543e+02 5.0265e+02 0.7071
-6.4598e+02 -3.3537e+01 6.4685e+02 0.9987
-6.4598e+02 3.3537e+01 6.4685e+02 0.9987
-3.8358e+02 -5.3777e+02 6.6055e+02 0.5807
-3.8358e+02 5.3777e+02 6.6055e+02 0.5807
-1.6934e+03 0.0000e+00 1.6934e+03 1.0000
-2.8107e+03 0.0000e+00 2.8107e+03 1.0000
-6.2832e+03 0.0000e+00 6.2832e+03 1.0000
-6.2832e+04 0.0000e+00 6.2832e+04 1.0000
Zeros:
Weca n also look at the controller poles. It turns out that our controller is stable.
rifd(Khinf)
Poles:
real imaginary frequency damping
(rad/sec) ratio
-2.8002e-02 3.4100e+01 3.4100e+01 0.0008
-2.8002e-02 -3.4100e+01 3.4100e+01 0.0008
-3.5543e+02 -3.5543e+02 5.0265e+02 0.7071
-3.5543e+02 3.5543e+02 5.0265e+02 0.7071
-6.4828e+02 0.0000e+00 6.4828e+02 1.0000
-1.1873e+03 -3.0188e+02 1.2251e+03 0.9692
-1.1873e+03 3.0188e+02 1.2251e+03 0.9692
-2.8870e+03 0.0000e+00 2.8870e+03 1.0000
Zeros:
Wea lsolo ok at a frequency response of the controller. Recall that it is single-input,
two-output.
Khinfg = freq(Khinf,omega);
gph3 = ctrlplot(Khinfg,{bode});
gph3 = plot(gph3,{title="Controller: Khinf"})?