BIBLIOGRAPHY 195
[24] D. L. Laughlin, K. G. Jordan, and M. Morari, “Internal model control and process
uncertainty: mapping uncertainty regions for SISO controller design,” Int. J. of
Control, vol. 44,no. 6, pp. 1675–1698, 1986.
[25] R. S. Smith and M. Dahleh, eds., The Modeling of Uncertainty in Control Systems:
Proceedings o f the 1992 Santa Barbara Workshop. 391 pgs., Springer-Verlag, 1994.
[26] M. Gevers, “Connecting identification and robust control: A new challenge,” in
Proc. IFACSymp. on Identification & System Parameter Estimation,vol.1,
pp. 1–10, 1991.
[27] A. Helmicki, C. Jacobson, and C. Nett, “Hidentification of stable lsi systems: A
scheme with direct application to controller design,” Proc. Amer. Control Conf.,
pp. 1428–1434, 1989.
[28] G. Gu and P. P. Khargonekar,“Linear and nonlinear algorithms for identification in
Hwith error bounds,” in Proc. Amer. Control Conf., pp. 64–69, 1991.
[29] A. J. Helmicki, C. A. Jacobson, and C. N. Nett, “Control oriented system
identification: A worst-case/deterministic approach in H,” IEEE Trans. Auto.
Control, pp. 1163–1176,1991.
[30] P. M¨akil¨a and J. Partington, “Robust appr oximation and identification in H,”
Proc. Amer. ControlConf., pp. 70–76, 1991.
[31] G. Gu and P. P. Khargonekar,“Linear and nonlinear algorithms for identification in
Hwith error bounds,” in IEEE Trans. Auto. Control, vol. 37, pp. 953–963, 1992.
[32] G. Gu and P. P. Khargonekar, “A class of algorithms for identificationin H,” in
Automatica,vol. 28, pp. 299–312, 1992.
[33] G. Gu, P. P. Khargonekar,and Y. Li, “Robust convergence of two-stage nonlinear
algorithms for identificationin H,” in Syst. and Con trolLetters, vol. 18,
pp. 253–263, 1992.
[34] R. G. Hakvoort, “Worst-case system identification in H: error bounds and
optimal models,” in Selected Topicsin Iden tificationModellin g and Control,Delft
UniversityPress, Vol. 5 1992.
[35] E.-W. Bai, “On-line H2,Hand pointwise uncertainty bound quantification in
identification of restricted complexity models,” in Proc. IEEE Control Decision
Conf., pp. 1719–1724, 1992.
[36] G. Go odwin and M. Salgado, “Quantification of uncertainty in estimation using an
embedding principle,” in Proc. Amer. Control Conf.,1989.