PROFIBUS Interface Center

SPC3

 

 

 

 

 

 

 

8Technical Data

8.1 Maximum Limit Values

Parameter

Designation

Min

 

Max

 

Unit

 

 

AMI-Vers.

 

ST-Vers.

AMI-Vers.

 

ST-Vers.

 

Supply Voltage

VDD

-0,3

 

-0,5

6

 

7

V

Input Voltage

VI

-0,3

 

-0,5

VDD+0,3

 

V DD +0,5

V

Input Current

II

-10

 

k.A.

10

 

k.A.

mA

Storage Temperature

T

-55

 

-40

150

 

125

0C

 

Stg

 

 

 

 

 

 

 

Ambient Temperature

TA

-40

 

-40

85

 

85

0C

Lead Temp.

TL

k.A

 

k.A.

300

 

k.A.

0C

(Soldering, 10 sec)

 

 

 

 

 

 

 

 

Tabel 8.1: Maximum Limit Values

8.2 Permitted Operating Values

Parameter

Designation

 

Min

 

Max

Unit

 

 

AMI-Vers.

ST-Vers.

AMI-Vers.

ST-Vers.

 

Supply Voltage

VDD

4,5

 

4,75

5,5

 

5,25

V

Input High Voltage

VIHC

0,7 VDD

 

0,7 V DD

k.A.

 

V DD

V

Input Low Voltage

VILC

k.A.

 

0

0,3 VDD

 

0,3 V DD

V

 

 

 

 

 

 

 

 

 

Schmitt-Trigger (CMOS)

 

 

 

 

 

 

 

 

Input High Voltage

VP / VIHC

k.A.

 

k.A.

0,8 VDD

 

4

V

Input Low Voltage

Vn / VILC

0,2 VDD

 

1

k.A.

 

k.A.

V

Hysteresis Voltage

Vh

1

 

k.A.

k.A.

 

k.A.

V

 

 

 

 

 

 

 

 

 

Schmitt-Trigger (TTL)

 

 

 

 

 

 

 

 

Input High Voltage

VP / VIHC

k.A.

 

k.A.

2,1

 

2,4

V

Input Low Voltage

Vn / VILC

0,7

 

0,6

k.A.

 

k.A.

V

Hysteresis Voltage

Vh

0,4

 

k.A.

k.A.

 

k.A.

V

Tabel 8. 2: -Permitted Operating Values

8.3 DC-Specifikation of the I/O- Drivers

Parameter

Design.

Condition

Min

 

 

Max

Unit

 

 

AMI-Vers.

ST-Vers.

AMI-Vers.

ST-Vers.

AMI-Vers.

ST-Vers.

 

Output High Voltage

VOH

VDD=4,5V

k.A.

VDD-0.5 *

 

V DD -0,5

k.A.

 

k.A.

V

Output High Voltage

VOH

VDD=4,5V

k.A.

3.65 **

 

V DD -0,5

k.A.

 

k.A.

V

Output Low Voltage

VOL

VDD=4,5V

k.A.

k.A.

 

k.A.

0,4*

 

0,4

V

Output Low Voltage

VOL

VDD=4,5V

k.A.

k.A.

 

k.A.

0,55**

 

0,4

V

*at an output load of 4mA ** at an output load of 8mA

Page 44

V1.3

SPC3 Hardware Description

2003/04

 

Copyright (C) Siemens AG 2003. All rights reserved.

Page 46
Image 46
Siemens SPC3 manual Technical Data, Maximum Limit Values, Permitted Operating Values, DC-Specifikation of the I/O- Drivers

SPC3 specifications

Siemens SPC3 is a state-of-the-art solution designed to enhance industrial automation, providing businesses with a robust platform for managing complex processes efficiently. This device epitomizes Siemens' commitment to innovation, blending cutting-edge technology with user-friendly features to deliver optimized performance across various applications.

One of the standout features of the Siemens SPC3 is its advanced processing capabilities. Equipped with high-performance processors, it can handle various tasks simultaneously, ensuring seamless operation even in demanding environments. This performance is complemented by enhanced memory capacity, which allows for increased data handling and improved execution speed, crucial for real-time monitoring and control applications.

The Siemens SPC3 also integrates a modular design, enabling flexibility and scalability. This characteristic allows users to customize their systems according to specific operational needs, adding or removing components as required. This adaptability is particularly beneficial for businesses that aim to scale their operations without incurring the substantial costs associated with overhauling existing systems.

Furthermore, the SPC3 employs the latest communication technologies, ensuring interoperability with various devices and systems. It supports industry-standard protocols, facilitating efficient data exchange between components. This connectivity is vital for establishing smart factories and enhancing overall productivity by creating a unified ecosystem.

Another significant aspect of the Siemens SPC3 is its focus on security. As cyber threats in industrial settings become increasingly sophisticated, Siemens prioritizes safeguarding user data and system integrity. The SPC3 incorporates advanced security features, including encryption and access control measures, to protect against unauthorized access and ensure data confidentiality.

Siemens has also emphasized ease of use in the SPC3. The interface is designed to be intuitive, allowing operators to navigate and configure the system effortlessly. Coupled with comprehensive software tools, users are empowered to implement changes swiftly while minimizing downtime.

In terms of energy efficiency, the SPC3 incorporates technologies that allow for optimized energy consumption, aligning with sustainability goals prevalent in today’s industries. By reducing energy waste, businesses not only lower operational costs but also contribute to environmental conservation.

In summary, Siemens SPC3 represents a significant advancement in industrial automation technology. Its high-performance processing, modular adaptability, advanced communication capabilities, robust security measures, and user-friendly design make it an ideal choice for businesses striving for efficiency and innovation in their operations. The SPC3 is more than just a control device; it is a comprehensive solution that meets the evolving demands of modern industries.