CPUset Modules

CPUset modules have two injector levers which must be operated simultaneously.

As you pull out the CPUset module, the handle in the top panel pops up and must be depressed again manually in order to withdraw the module fully from the chassis (see FIGURE 2-12). Once the handle is clear of the crossbar and has popped up again, it can be used to take the weight of the module.

Caution CPUset modules are very heavy. The weight warning label on the CPUset is for guidance only. The actual weight of a CPUset depends on its configuration. Both the front and top handles must be used simultaneously once the module has been withdrawn as illustrated in FIGURE 2-12.

On inserting the CPUset module the handle must be depressed in order to push the module fully into the chassis.

Chapter 2 Hardware Installation 25

Page 39
Image 39
Sun Microsystems 1800 manual CPUset Modules

1800 specifications

Sun Microsystems, founded in 1982, unveiled an array of innovative products over the years, among which the Sun-1 workstation and later the Sun-1800 series were significant contributions to the technology landscape. Designed specifically for engineering, graphics, and computing tasks, the Sun-1800 series emerged during a period when workstations were essential for high-performance computing applications.

The Sun-1800 series was powered by the SPARC architecture, which became a hallmark of Sun Microsystems' technological advancement. SPARC, an acronym for Scalable Processor Architecture, allowed the system to achieve high levels of performance and efficiency, positioning it well against competitors in the workstation market. The SPARC processors used in the Sun-1800 series enabled faster computation and multitasking, making it well-suited for scientific applications, computer-aided design (CAD), and complex data analyses.

One of the standout features of the Sun-1800 series was its expansive memory capabilities. Supporting configurations that could house up to 128 megabytes of RAM, the workstations were excellent for handling large datasets that were prevalent in research and corporate environments. This high memory capacity, combined with the efficient use of the SPARC architecture, granted users access to significant computational power, which was crucial for multitasking in complex job environments.

The Sun-1800 series also emphasized networking capabilities, with integrated Ethernet support. This allowed users to seamlessly connect their workstations into local area networks, facilitating collaborative projects and data sharing among teams. The use of the Solaris operating system, which was based on UNIX, also provided a robust and stable environment for enterprise applications, making the Sun-1800 ideal for business-critical applications.

Moreover, the system was designed to support various programming languages and development tools, attracting engineers, scientists, and software developers alike. Sun Microsystems also focused on providing high-quality graphics support, with advanced graphical capabilities that enabled users to engage in advanced visualization tasks, such as 3D modeling.

In summary, the Sun Microsystems 1800 series stands out for its powerful SPARC architecture, impressive memory capacity, integrated networking, and robust graphic capabilities. These characteristics, combined with the reliability of the Solaris operating system, positioned the Sun-1800 as a favored choice among professionals in engineering and scientific fields, shaping the future of workstation computing.