Intel STL2 manual Prevent Power Supply Overload, Place Battery Marking on Computer, Europe, Canada

Page 95

STL2 Server Board TPS

Regulatory and Integration Information

8.2.2.1In Europe

The CE marking signifies compliance with all relevant European requirements. If the host computer does not bear the CE marking, obtain a supplier’s Declaration of Conformity to the appropriate standards required by the European EMC Directive and Low Voltage Directive. Other directives, such as the Machinery and Telecommunications Directives, may also apply depending on the type of product. No regulatory assessment is necessary for low voltage DC wiring used internally or wiring used externally when provided with appropriate overcurrent protection. Appropriate protection is provided by a maximum 8 Amp current limiting circuit or a maximum 5 Amp fuse or positive temperature coefficient (PTC) resistor. This Intel server board has PTCs on all external ports that provide DC power externally.

8.2.2.2In the United States

A certification mark by a Nationally Recognized Testing Laboratory (NRTL) such as UL, CSA, or ETL signifies compliance with safety requirements. External wiring must be UL Listed and suitable for the intended use. Internal wiring must be UL Listed or Recognized and rated for applicable voltages and temperatures. The FCC mark (Class A for commercial or industrial only or Class B for residential) signifies compliance with electromagnetic interference requirements.

8.2.2.3In Canada

A nationally recognized certification mark such as CSA or cUL signifies compliance with safety requirements. No regulatory assessment is necessary for low voltage DC wiring used internally or wiring used externally when provided with appropriate overcurrent protection. Appropriate protection is provided by a maximum 8 Amp current limiting circuit or a maximum approved

5 Amp fuse or positive temperature coefficient (PTC) resistor. This server board has PTCs on all external ports that provide DC power externally.

8.2.3Prevent Power Supply Overload

The power supply output must not be overloaded. To avoid overloading the power supply, the calculated total current load of all the modules within the computer should be less than the maximum output current rating of the power supply. If this is not adhered to, the power supply may overheat, catch fire, or damage the insulation that separates hazardous AC line circuitry from low voltage user accessible circuitry and result in a shock hazard. If the load drawn by a module cannot be determined by the markings and instructions supplied with the module, contact the module supplier’s technical support.

8.2.4Place Battery Marking on Computer

There is insufficient space on this server board to provide instructions for replacing and disposing of the battery. The following warning must be placed permanently and legibly on the host computer as near as possible to the battery.

WARNING: Danger of explosion if battery is incorrectly replaced.

Replace with only the same or equivalent type recommended by the manufacturer. Dispose of used batteries according to the manufacturer’s instructions.

Revision 1.0

8-87

Image 95
Contents Revision September 22 Enterprise Platforms Group STL2 Server BoardDate Revision Modifications Number Revision History STL2 Server Board TPSTable of Contents Table of ContentsSTL2 Server Board TPS Basic Input Output System BiosJumpers and Connectors STL2 Server Board TPSTable of Contents Power ConsumptionList of Figures STL2 Server Board TPS Embedded NIC PCI SignalsSTL2 Server Board TPS List of Tables List of TablesList of TablesSTL2 Server Board TPS STL2 Server Board TPS Introduction STL2 Server Board Feature OverviewPurpose AudienceIntroduction STL2 Server Board TPS STL2 Server Board Block DiagramSTL2 Server Board Block Diagram This page intentionally left blank Speed FSB Frequency Cache Size Core Intel Pentium III Processor SubsystemSupported Processor Types STL2 Server Board Supported ProcessorsTermination Package Processor Bus Termination / Regulation / PowerDual Processor Operation 3 PGA370 Socket∙ IB6566 South Bridge ServerWorks ServerSet III LE ChipsetMemory ∙ NB6635 North Bridge 3.0LEUltra160 / Ultra WideSCSI Controller PCI I/O Subsystem1 64-bit / 66 MHz PCI Subsystem AIC-7899 Support Embedded Scsi Supported PCI CommandsBe 30 L Command Target Master Scsi Transfer SpeedsNetwork Interface Controller NIC 2 32-bit/33 MHz PCI SubsystemSupported Network Features Video Controller Video Controller PCI SignalsStandard VGA Modes Video Controller Supported PCI CommandsBE30L Command Type Target Master Resolution Refresh Rate Hz ColorsPCI Interface 2.3 IB6566 South BridgeCompatibility Interrupt Control Power ManagementChipset Support Components Legacy I/O Super I/O National* PC97317VULParallel Port Keyboard and Mouse ConnectorsPower Management Controller Serial PortsInterrupt Routing Bios FlashExternal Device Connectors Default I/O ApicSTL2 Baseboard Interrupt Routing Diagram PIC mode STL2 Baseboard Interrupt Routing Diagram Symmetric mode STL2 PCI IDs Device Bus Number Device Number Slot ID Signal 2316 1511PCI Ids Relationship between PCI IRQ and PCI DeviceRevision Page STL2 Server Board TPS Server Management Baseboard Management ControllerSensor Number Sensor Type Monitoring Device Hardware SensorsServer Management STL2 Server Board TPS Sensor Type Sensor-Specific Event Remarks Code Offset PCI Serr EMP AcpiWake On LAN Function AC Link ModeSTL2 Server Board TPS Basic Input Output System Bios Bios OverviewSystem Flash ROM Layout System BiosFlash Update Utility Basic Input Output System Bios STL2 Server Board TPSSetup Utility Screen Setup UtilityConfiguration Utilities Overview Setup Utility OperationF1 Help Entering Setup UtilityKeyboard Command Bar Enter Execute CommandF6/+ Change Value F9 Setup Defaults← → Select Menu F5/- Change ValueMain Menu Selections Main Menu SelectionsPrimary Master and Slave Adapters Submenu Selections Processor Settings Submenu SelectionsSTL2 Server Board TPSBasic Input Output System Bios Choices or Display Feature Only Description User SettingMemory Reconfiruation Submenu Selections Advanced Menu SelectionsAdvanced Menu Selections Peripheral Configuration Submenu Selections 10. Numlock Submenu Selections PCI Device Submenu SelectionsOption ROM Submenu Selections 11. Security Menu Selections Security Menu Selections14. Wake On Events Submenu Selections 12. Secure Mode Submenu SelectionsSystem Hardware Menu Selections 13. Server Menu Selections15. Console Redirection Submenu Selections Boot Menu Selections16. Boot Menu Selections 17. Boot Device Priority Selections19. Removable Devices Selections Cmos Memory DefinitionExit Menu Selections 18. Hard Drive SelectionsLoading the System Bios Cmos Default OverrideFlash Update Utility OEM Customization User-supplied Bios Code SupportMSB Scan Point Mask RAM/Stack/BDA Video/Keyboard Scan Point Definitions21. User Binary Area Scan Point Definitions 22. Format of the User Binary Information Structure Recovery ModeLanguage Area OEM Splash ScreenCode Meaning Error Messages and Error CodesPost Codes 23. Port-80h Code DefinitionBeeps Reason 24. Standard Bios Port-80 CodesPage Revision Basic Input Output System BIOSSTL2 Server Board TPS Post Error Codes and Messages25. Recovery Bios Port-80 Codes 26. Post Error Messages and CodesRevision Beeps Error Cause Recommended Action BMC Revision Level Identification Identifying Bios and BMC Revision LevelsBios Revision Level Identification Bus Device Channel Selected Scsi Adapter Adaptec Scsi Utility Configuration SettingsAdaptec Scsi Utility Running the Scsi UtilityOption Recommended Setting or User Setting Display Only 27. Adaptec Scsi Utility Setup ConfigurationsExiting Adaptec Scsi Utility This page intentionally left blank Page STL2 Server Board TPS Jumpers and Connectors Jumper and connector location key for FigureBack Panel location key for Figure Jumpers and Connectors STL2 Server Board TPSJumper Blocks Setting CMOS/Password Clear Jumper Block 1J15Clearing Cmos Clearing and Changing a PasswordJumper Block 1J15 Settings Setting Processor Frequency Jumper Block 5E1 Perfoming a Bios Recovery BootJumper Block 1J15 Default Settings Setting Configuration Jumper Block 1L4Jumper Block 5E1 Settings Jumper Block 6A Settings ConnectorsSetting Configuration Jumper Block 6A Jumper Block 1L4 Settings3 I2C Power Connector P37 Main ATX Power Connector P33Auxilary ATX Power Connector P34 Speaker Connector P25 System Fan Connectors P29, P27, P11Processor Connectors P12, P36 Speaker Connector P31Svga Video Port Diskette Drive Connector P2014. Video Port Connector Pinout Serial Ports COM1 and COM2 Keyboard and Mouse ConnectorsParallel Port 19. USB Connectors 13 RJ-45 LAN ConnectorUSB Connectors 18. RJ-45 LAN Connector Signals21. Ultra160 Scsi Connector Ultra Scsi Connector P9Ultra160 Scsi Connector P8 20. Ultra Scsi Connector PinoutJumpers and Connectors STL2 Server Board TPS Pin Signal IDE Connector P1922. IDE Connector Pinout 23 -Bit PCI Connector Pinout 18 32-Bit PCI Connector24 -Bit PCI Connctor Pinout 19 64-Bit PCI ConnectorPin Description Front Panel 24-pin Connector Pinout P2325. Front Panel 24-pin Connector Pinout Jumpers and Connectors STL2 Server Board TPS This page intentionally left blank Page STL2 Server Board Calculated Power Consumption Calculated Power ConsumptionDevices +5V +12V Total Wattage Measured Power ConsumptionSTL2 Server Board Measured Power Consumption Power Consumption STL2 Server Board TPSSTL2 Server Board TPS Mechanical Specifications Mechanical SpecificationsMechanical Specifications STL2 Server Board TPS Regulation Title Safety RegulationsRegulatory Compliance Ensure EMC Installation InstructionsEnsure Host Computer and Accessory Module Certifications United States Prevent Power Supply OverloadPlace Battery Marking on Computer EuropeSystem Office Environment Installation PrecautionsEnvironmental Limits Use Only for Intended ApplicationsSystem Environmental Testing This page intentionally left blank Term Definition STL2 Server Board TPS GlossaryReference Documents STL2 Server Board TPS Reference DocumentsSTL2 Server Board EPS Index IndexIndex STL2 Server Board TPS Revision

STL2 specifications

The Intel STL2, known as the Intel Storage Technology Level 2, is a robust solution designed to elevate storage management and performance for enterprise-level applications. This next-generation system is specifically tailored for organizations that demand high reliability, scalability, and efficiency in their storage solutions.

One of the primary features of the Intel STL2 is its advanced data protection mechanisms. With integrated RAID (Redundant Array of Independent Disks) support, it ensures that data remains safe, even in the event of hardware failure. RAID configurations can be easily set up and managed, allowing businesses to choose the right balance between performance and redundancy based on their unique requirements.

In terms of performance, the STL2 leverages cutting-edge SSD (Solid State Drive) integration to provide high-speed data access and reduced latency. This capability is essential for modern applications that require quick retrieval of large volumes of data, making it suitable for environments like data analytics, AI, and cloud computing.

Scalability is another significant characteristic of the Intel STL2. It is designed to grow alongside an organization’s needs, supporting a diverse range of storage architectures. Whether a company is looking to expand its data center or transition to hybrid cloud solutions, the STL2 can accommodate additional storage resources effortlessly, ensuring that performance does not degrade as storage demands increase.

Moreover, the STL2 features advanced automation and management tools that simplify storage operations. The system allows for real-time monitoring and analytics, providing insights into storage health, performance metrics, and capacity forecasts. This level of visibility enables IT teams to optimize resource utilization and proactively address potential issues before they become critical.

Another notable technology integrated into the STL2 is Intel’s Open Storage Architecture, which promotes interoperability with various software and hardware platforms. This open approach facilitates seamless integrations with existing systems and enhances flexibility within dynamic IT environments.

Lastly, Intel STL2 prioritizes energy efficiency. Its design minimizes power consumption without sacrificing performance, helping organizations reduce their operational costs and carbon footprint.

In summary, the Intel STL2 stands out in the competitive landscape of storage solutions with its focus on data protection, high performance, scalability, advanced management features, open architecture compatibility, and energy efficiency. These characteristics make it an ideal choice for businesses looking to enhance their data storage capabilities in a rapidly evolving digital landscape.