Intel BX80637I73770K, BX80646I74770 Package Handling Guidelines, Package Insertion Specifications

Page 106
Processor Loading Specifications
December 2013 Order No.: 328897-004

Processor—Package Mechanical Specifications

mechanical system or component testing should not exceed the maximum limits. The processor package substrate should not be used as a mechanical reference or load- bearing surface for thermal and mechanical solution.

Table 57.

Processor Loading Specifications

 

 

 

 

 

 

 

 

Parameter

Minimum

Maximum

Notes

 

 

 

 

 

 

Static Compressive Load

600 N [135 lbf]

1, 2, 3

 

 

 

 

 

 

Dynamic Compressive

712 N [160 lbf]

1, 3, 4

 

Load

 

 

 

 

 

 

 

 

Notes: 1. These specifications apply to uniform compressive loading in a direction normal to the processor, IHS.

2.This is the maximum static force that can be applied by the heatsink and retention solution to maintain the heatsink and processor interface.

3.These specifications are based on limited testing for design characterization. Loading limits are for the package only and do not include the limits of the processor socket.

4.Dynamic loading is defined as an 50g shock load, 2X Dynamic Acceleration Factor with a 500g maximum thermal solution.

8.3Package Handling Guidelines

The following table includes a list of guidelines on package handling in terms of recommended maximum loading on the processor IHS relative to a fixed substrate. These package handling loads may be experienced during heatsink removal.

Table 58.

Package Handling Guidelines

 

 

 

 

 

 

 

 

 

 

 

 

Parameter

 

Maximum Recommended

 

Notes

 

 

 

 

 

 

 

 

 

Shear

 

311 N [70 lbf]

 

1, 4

 

 

 

 

 

 

 

 

 

Tensile

 

111 N [25 lbf]

 

2, 4

 

 

 

 

 

 

 

 

 

Torque

 

3.95 N-m [35 lbf-in]

 

3, 4

 

 

 

 

 

 

Notes: 1.

A shear load is defined as a load applied to the IHS in a direction parallel to the IHS top surface.

 

2.

A tensile load is defined as a pulling load applied to the IHS in a direction normal to the IHS

 

 

surface.

 

 

 

 

3.

A torque load is defined as a twisting load applied to the IHS in an axis of rotation normal to the

 

 

IHS top surface.

 

 

 

 

4.

These guidelines are based on limited testing for design characterization.

 

 

 

 

 

 

 

 

8.4Package Insertion Specifications

The processor can be inserted into and removed from an LGA1150 socket 15 times. The socket should meet the LGA1150 socket requirements detailed in the LGA1150 Socket Application Guide.

8.5Processor Mass Specification

The typical mass of the processor is 27.0 g (0.95 oz). This mass [weight] includes all the components that are included in the package.

8.6Processor Materials

The following table lists some of the package components and associated materials.

Desktop 4th Generation Intel® CoreProcessor Family, Desktop Intel® Pentium® Processor Family, and Desktop Intel® Celeron® Processor Family

Datasheet – Volume 1 of 2 106

Image 106
Contents Datasheet - Volume 1 of DecemberDatasheet - Volume 1 of 2 Revision History Contents4.0 Power Management 1.0 IntroductionProcessor-Contents 6.0 Signal Description5.0 Thermal Management 9.0 Processor Ball and Signal Information 7.0 Electrical Specifications8.0 Package Mechanical Specifications 7.8.1 Platform Environment Control Interface PECI DC CharacteristicsFigures Tables Tables-ProcessorProcessor-Tables Revision History Revision History-Processor1.0 Introduction Processor-IntroductionProcessor Figure 1. Platform Block Diagram1.1 Supported Technologies Platform Controller Hub PCHProcessor Core 1.3 Power Management Support1.2 Interfaces System1.6 Terminology 1.4 Thermal Management Support1.5 Package Support Terminologywith Virtual Machine Monitor software, enables multiple, robust independent software Description Document 1.7 Related DocumentsRelated Documents Number / Locationproducts/processor specificationshttp manuals/index.htm2.0 Interfaces 2.1 System Memory Interface2.1.1 System Memory Technology Supported Supported UDIMM Module ConfigurationsProcessor DIMM Support by Product 2.1.2 System Memory Timing Support Supported SO-DIMM Module Configurations AIO OnlyDDR3 / DDR3L System Memory Timing Support Dual-Channel Mode - Intel Flex Memory Technology Mode 2.1.3 System Memory Organization ModesSingle-Channel Mode Figure 2. Intel Flex Memory Technology OperationsCommand Overlap 2.1.3.2 Intel Fast Memory Access Intel FMA Technology EnhancementsJust-in-Time Command Scheduling 2.1.3.1 System Memory Frequency2.2.1 PCI Express* Support Table 7. PCI Express* Supported Configurations in Desktop Products2.2 PCI Express* Interface 2.1.3.3 Data Scrambling2.2.3 PCI Express* Configuration Mechanism 2.2.2 PCI Express* ArchitecturePCI Express* Port PCI Express* Related Register Structures in the ProcessorPCI Express* Lanes Connection 1 X 4 Controller 2.3 Direct Media Interface DMIFigure 4. PCI Express* Typical Operation 16 Lanes Mapping 1 X 8 ControllerDMI Error Flow DMI Link Down2.4 Processor Graphics 2.5 Processor Graphics Controller GT3D Pipeline Figure 5. Processor Graphics Controller Unit Block Diagram2.5.1 3D and Video Engines for Graphics Processing 3D Engine Execution UnitsClip Stage Vertex Shader VS StageGeometry Shader GS Stage Strips and Fans SF Stage2.5.2 Multi Graphics Controllers Multi-Monitor Support 2.6 Digital Display Interface DDILogical 128-Bit Fixed BLT and 256 Fill Engine Figure 6. Processor Display Architecture DisplayPort Source DeviceSink Device Figure 7. DisplayPort* OverviewFigure 8. HDMI* Overview HDMI SourceHDMI Sink HDMI TxIntegrated Audio Multiple Display Configurationsembedded DisplayPort Table 8. Processor Supported Audio Formats over HDMI*and DisplayPortValid Three Display Configurations through the Processor High-bandwidth Digital Content Protection HDCP2.8 Platform Environmental Control Interface PECI 2.7 Intel Flexible Display Interface Intel FDI2.8.1 PECI Bus Architecture Host / Originator Figure 9. PECI Host-Clients Connection ExamplePECI PECI ClientIntel VT-x Objectives 3.0 Technologies3.1 Intel Virtualization Technology Intel VT ing=VTIntel VT-x Features Intel VT-d Objectives Intel VT-d Features Figure 10. Device to Domain Mapping Structures3.2 Intel Trusted Execution Technology Intel TXT 3.3 Intel Hyper-Threading Technology Intel HT Technology 3.5 Intel Advanced Vector Extensions 2.0 Intel AVX2 3.4 Intel Turbo Boost TechnologyIntel Turbo Boost Technology 2.0 Frequency PCLMULQDQ Instruction 3.6 Intel Advanced Encryption Standard New Instructions Intel AES-NIIntel Secure Key 3.8 Intel 64 Architecture x2APIC 3.10 Execute Disable Bit 3.9 Power Aware Interrupt Routing PAIR3.11 Supervisor Mode Execution Protection SMEP Note Power states availability may vary between the different SKUs 4.0 Power ManagementFigure 11. Processor Power States S0 - Processor Fully powered on full on mode / connected standby modeProcessor Core / Package State Support 4.1 Advanced Configuration and Power Interface ACPI States SupportedSystem States Integrated Memory Controller StatesDirect Media Interface DMI States 4.2 Processor Core Power Management4.2.1 Enhanced Intel SpeedStep Technology Key Features G, S, and C Interface State CombinationsThread 4.2.2 Low-Power Idle StatesFigure 12. Idle Power Management Breakdown of the Processor Cores Core 0 StateCoordination of Thread Power States at the Core Level 4.2.3 Requesting Low-Power Idle StatesFigure 13. Thread and Core C-State Entry and Exit Core C1/C1E State 4.2.4 Core C-State RulesCore C0 State Core C3 StateCore C7 State 4.2.5 Package C-StatesCore C6 State C-State Auto-DemotionCoordination of Core Power States at the Package Level Package C0 State Figure 14. Package C-State Entry and ExitPackage C1/C1E State Package C6 State Package C2 StatePackage C3 State Package C7 State4.2.6 Package C-States and Display Resolutions Deepest Package C-State Available4.3 Integrated Memory Controller IMC Power Management 4.3.1 Disabling Unused System Memory Outputs4.3.2 DRAM Power Management and Initialization No power-down CKE disable4.3.2.1 Initialization Role of CKE 4.3.2.3 Dynamic Power-Down4.3.2.2 Conditional Self-Refresh 4.3.3 DRAM Running Average Power Limitation RAPL 4.4 PCI Express* Power Management4.5 Direct Media Interface DMI Power Management 4.3.4 DDR Electrical Power Gating EPG4.6.2 Graphics Render C-State 4.6 Graphics Power Management4.6.1 Intel Rapid Memory Power Management Intel RMPM 4.6.3 Intel Graphics Dynamic Frequency5.0 Thermal Management Thermal Management-ProcessorProcessor-Thermal Management Desktop Processor Thermal Specifications5.1 Desktop Processor Thermal Profiles ProfileTTV Power W 5.1.1 Processor PCG 2013D Thermal ProfileTCASE = 0.33 * Power + Case5.1.2 Processor PCG 2013C Thermal Profile 5.1.3 Processor PCG 2013B Thermal Profile 5.1.4 Processor PCG 2013A Thermal Profile Measure TCASE at the geometric center of the package 5.2 Thermal Metrology5.3 Fan Speed Control Scheme with Digital Thermal Sensor DTS 37.5 37.5Figure 20. Digital Thermal Sensor DTS 1.1 Definition Points ΨCA = TCASE-MAX - TAMBIENT-TARGET / TDP5.4 Fan Speed Control Scheme with Digital Thermal Sensor DTS Figure 21. Digital Thermal Sensor DTS Thermal Profile Definition 5.5 Processor TemperatureThermal Margin Slope 5.6 Adaptive Thermal Monitor Frequency ControlImmediate Transition to Combined TM1 and TM2 Clock ModulationCritical Temperature Flag PROCHOT# Signal 5.7 THERMTRIP# Signal 5.8 Digital Thermal Sensor5.9 Intel Turbo Boost Technology Thermal Considerations 5.9.1 Intel Turbo Boost Technology Power Control and Reporting5.8.1 Digital Thermal Sensor Accuracy Taccuracy 5.9.2 Package Power Control Intel Turbo Boost Technology 2.0 Package Power Control SettingsFigure 22. Package Power Control 5.9.3 Turbo Time ParameterSignal Description Buffer Types 6.0 Signal Description6.1 System Memory Interface Signals Memory Channel A SignalsMemory Channel B Signals Signal Description-ProcessorDDR3/DDR3L Reference Voltage This signal is used as 6.2 Memory Reference and Compensation SignalsMemory Reference and Compensation Signals System Memory Impedance CompensationCFG3 MSR Privacy Bit Feature 6.3 Reset and Miscellaneous SignalsReset and Miscellaneous Signals CFG65 PCI Express* BifurcationPCI Express* Graphics Interface Signals 6.4 PCI Express*-Based Interface Signals6.5 Display Interface Signals Display Interface SignalsPhase Locked Loop PLL Signals 6.7 Phase Locked Loop PLL Signals6.8 Testability Signals Testability SignalsError and Thermal Protection Signals 6.9 Error and Thermal Protection Signals6.10 Power Sequencing Signals Power Sequencing Signals6.13 Ground and Non-Critical to Function NCTF Signals 6.11 Processor Power Signals6.12 Sense Signals Processor Power Signals7.1 Integrated Voltage Regulator 7.0 Electrical Specifications7.2 Power and Ground Lands 7.3 VCC Voltage Identification VIDTable 45. Voltage Regulator VR 12.5 Voltage Identification Electrical Specifications-Processorcontinued Processor-Electrical Specificationscontinued continued Electrical Specifications-Processorcontinued Processor-Electrical Specifications 7.5 Signal Groups 7.4 Reserved or Unused SignalsSignal Groups Power / Ground / Other DDR3 / DDR3L Data SignalsDDR3 / DDR3L Reference Voltage Signals DDR3 / DDR3L CompensationPCI Express* Graphics 7.6 Test Access Port TAP Connection7.7 DC Specifications Digital Media Interface DMI7.8 Voltage and Current Specifications Electrical Specifications-Processor DDR3 / DDR3L Signal Group DC Specifications VCCIOOUT, VCOMPOUT, and VCCIOTERMDigital Display Interface Group DC Specifications CMOS Signal Group DC Specifications embedded DisplayPort* eDP* Group DC SpecificationsGTL Signal Group and Open Drain Signal Group DC Specifications 7.8.1 Platform Environment Control Interface PECI DC Characteristics PCI Express* DC Specifications7.8.2 Input Device Hysteresis Figure 23. Input Device HysteresisFigure 24. Processor Package Assembly Sketch 8.0 Package Mechanical Specifications8.2 Package Loading Specifications 8.1 Processor Component Keep-Out ZoneProcessor Loading Specifications 8.4 Package Insertion Specifications8.5 Processor Mass Specification 8.3 Package Handling GuidelinesProcessor Materials 8.7 Processor Markings8.8 Processor Land Coordinates Figure 25. Processor Top-Side MarkingsProcessor Storage Specifications 8.9 Processor Storage SpecificationsFigure 26. Processor Package Land Coordinates RHsustained storage TIMEsustained storage9.0 Processor Ball and Signal Information Processor Ball List by Signal NameProcessor Ball and Signal Information-Processor Processor-Processor Ball and Signal Information Signal Name Signal NameSignal Name Ball #Signal Name Signal NameSignal Name Ball #Signal Name AU20 Signal Name Signal NameSignal Name Ball #Signal Name Signal NameSignal Name Ball #Signal Name Signal NameSignal Name Ball #Signal Name Signal NameSignal Name Ball #
Related manuals
Manual 1 pages 13.56 Kb Manual 2 pages 53.21 Kb Manual 1 pages 5.02 Kb

BX80633I74960X, BX80646I34130, BX80646I54430, BX80646I74770K, BX80646I74770 specifications

The Intel CM8063701159502, or BX80637I53470, is a powerful CPU designed for modern computing needs. This processor belongs to Intel's 4th generation of Core i5 processors, commonly known as "Haswell". It showcases Intel's commitment to enhancing performance, increasing energy efficiency, and delivering an enriching user experience.

One of the main features of the Intel Core i5-3470 is its quad-core architecture. This allows the processor to handle multiple threads simultaneously, making it adept at multitasking and running demanding applications efficiently. With a base clock speed of 3.2 GHz, it can boost up to 3.6 GHz using Intel’s Turbo Boost technology, providing additional power when needed for intensive tasks like gaming or video editing.

The Intel i5-3470 features Intel's HD Graphics 2500, which offers decent graphics performance for everyday tasks and casual gaming. This integrated graphics solution is capable of delivering high-definition visuals and supports DirectX 11, making it suitable for lightweight gaming experiences without the need for an additional dedicated graphics card.

Another standout characteristic of the BX80637I53470 is its support for Intel Smart Cache, which is an advanced caching technology. It provides a shared cache pool that enhances performance by reducing the time it takes to access frequently used data. This feature, coupled with Intel's instruction set architecture, allows for improved processing agility and efficiency across applications.

The processor is built on a 22nm manufacturing process, which results in reduced power consumption and heat generation compared to its predecessors. It has a thermal design power (TDP) of 77 watts, making it energy efficient while still delivering robust performance. Additionally, the Core i5-3470 supports DDR3 memory, with speeds up to 1600 MHz, enabling quick data retrieval and improved system responsiveness.

Security is another important aspect of the Intel i5-3470, featuring Intel Secure Key and Intel AES New Instructions (AES-NI), which protect sensitive data and enhance encryption performance.

In conclusion, the Intel CM8063701159502, or BX80637I53470, encapsulates modern computing technology with its powerful quad-core performance, integrated graphics, energy efficiency, and robust security features, making it a versatile choice for a wide range of computing tasks. Whether users are engaging in casual gaming, productivity tasks, or multimedia consumption, this processor demonstrates a solid balance of performance and efficiency, providing an excellent computing experience overall.