Intel 320028-001 manual Heatsink Orientation Relative to Airflow Direction

Page 23

Core™ 2 Duo Mobile Processors—Reference Thermal Solutions

Thermal interface materials have thermal impedance (resistance) that will increase as the material degrades over time. It is important for thermal solution designers to take this increase in impedance into consideration when designing a thermal solution. It is recommended that system integrators work with TIM suppliers to determine the performance of the desired thermal interface material. If system integrators wish to maintain maximum thermal solution performance, the TIM could be replaced during standard maintenance cycles.

The reference thermal solution uses Shin Etsu* G751. Alternative materials can be used at the user’s discretion. Regardless, the entire heatsink assembly, including the heatsink, and TIM (including attach method), must be validated together for specific applications.

6.8Heatsink Orientation

All of the heatsinks were designed to maximize the available space within the volumetric keep out zone and their respective form factor limitations. These heatsinks must be oriented in a specific direction relative to the processor keep out zone and airflow. In order to use these designs, the processor must be placed on the PCB in an orientation so the heatsink fins will be parallel to the airflow. Figure 12 illustrates this orientation.

Figure 12. Heatsink Orientation Relative to Airflow Direction

Intel® Core™ 2 Duo Mobile Processors on 45-nm process-Thermal Design Guide

 

TDG

June 2008

23

Order Number: 320028-001

Image 23
Contents June Thermal Design GuideTDG Contents Tables FiguresFirst Public release Revision HistoryDesign Flow IntroductionDefinition of Terms Sheet 1 Definition of TermsDefinition of Terms Sheet 2 Reference DocumentsThermal Design Tool Availability Package Information Thermal Specifications for the Intel Core2 Duo processor Thermal SpecificationsThermal Design Power Maximum Allowed Component TemperatureBoard Level Keep Out Zone Requirements Mechanical SpecificationsPackage Mechanical Requirements Package Keep Out Zones RequirementsPrimary Side Keep Out Zone Requirements- Micro-FCPGA Primary Side Keep Out Zone Requirements- Micro-FCBGA Secondary Side Keep Out Zone Requirements Thermal Solution Characterization Thermal Solution RequirementsEquation 4. Required Performance of the Heatsink Equation 3. Maximum Allowable ResistanceTDP Required Heatsink Thermal Performance Ψ JAAtca Reference Thermal Solution Reference Thermal Solutions1U+ Reference Heatsink Keep Out Zone RequirementsThermal Performance Keep Out Zone Requirements Compact PCI Reference Heatsink Heatsink Thermal Performance vs. Volumetric Airflow RateThermal Interface Material TIM Heatsink Fastener AssemblyHeatsink Orientation Relative to Airflow Direction Heatsink OrientationLocal Ambient Temperature Measurement Guidelines Die Temperature MeasurementsPower Simulation Software Additional Thermal FeaturesActive Heatsink Measurements Measuring TLA with an Active Heatsink Measuring TLA with a Passive Heatsink Reliability Requirements Reliability GuidelinesReference Heatsink Appendix a Thermal Solution Component SuppliersMechanical Drawings Appendix B Mechanical DrawingsCore 2 Duo Mobile Processors-Mechanical Drawings Mechanical Drawings-Core 2 Duo Mobile Processors AdvancedTCA* Reference Heatsink Assembly AdvancedTCA* Reference Heatsink Core 2 Duo Mobile Processors-Mechanical Drawings Mechanical Drawings-Core 2 Duo Mobile Processors CompactPCI* Reference Heatsink Assembly CompactPCI* Reference Heatsink Reference Heatsink PCB Keep Out Requirements Sheet 1 Reference Heatsink PCB Keep Out Requirements Sheet 2 Reference Heatsink Assembly Reference Heatsink

320028-001 specifications

The Intel 320028-001 is a robust processor designed to meet the demands of both consumers and professionals. Built on Intel's advanced microarchitecture, this model showcases a blend of high performance, energy efficiency, and cutting-edge technology.

One of the standout features of the Intel 320028-001 is its impressive clock speed, which ensures rapid data processing capabilities. This processor is designed with multiple cores, allowing it to handle several tasks simultaneously without compromising performance. This multi-core architecture is particularly beneficial for applications that require heavy multitasking or resource-intensive activities such as gaming, video editing, and 3D rendering.

In terms of technology, the Intel 320028-001 leverages Intel’s Turbo Boost technology, which dynamically increases the processor's clock speed to optimize performance based on current workload demands. This results in an efficient balance between performance and power consumption, providing users with the necessary speed when needed while conserving energy during lighter tasks.

Another key characteristic of the Intel 320028-001 is its compatibility with Intel Hyper-Threading technology. This allows each core to handle two threads simultaneously, resulting in improved multitasking capabilities and enhanced performance for threaded applications. This feature is particularly advantageous for applications that can utilize parallel processing, significantly enhancing overall system responsiveness.

Additionally, the Intel 320028-001 utilizes Intel’s Smart Cache technology. This shared cache allows for quicker data access and efficient memory usage, further optimizing execution speeds and minimizing latency. The processor is also designed to work seamlessly with the latest in memory technologies, supporting DDR4 memory for increased bandwidth and improved overall system performance.

Security features in the Intel 320028-001 include Intel Software Guard Extensions (SGX), which provide hardware-based safeguards for sensitive information, an essential component for business applications and personal data protection.

Overall, the Intel 320028-001 stands out with a combination of high-performance specs, advanced features, and energy-efficient operation, making it an excellent choice for a wide range of computing needs. Whether for gaming, professional applications, or daily use, this processor offers the reliability and performance that users expect from Intel.