Intel 320028-001 manual Introduction, Design Flow

Page 6

Introduction—Core™ 2 Duo Mobile Processors

1.0Introduction

The power dissipation of electronic components has risen along with the increase in complexity of computer systems. To ensure quality, reliability, and performance goals are met over the product’s life cycle, the heat generated by the device must be properly dissipated. Typical methods to improve heat dissipation include selective use of airflow ducting, and/or the use of heatsinks.

The goals of this document are to:

Identify the thermal and mechanical specification for the device.

Describe a reference thermal solution that meets the specifications.

A properly designed thermal solution will adequately cool the device at or below the thermal specification. This is accomplished by providing a suitable local-ambient temperature, ensuring adequate local airflow, and minimizing the die to local-ambient thermal resistance. Operation outside the functional limits can degrade system performance and may cause permanent changes in the operating characteristics of the component.

This document describes thermal design guidelines for the Intel® Core™ 2 Duo Mobile Processors on 45-nm process for Embedded Applications in the micro Flip Chip Pin Grid Array (micro-FCPGA) package and the micro Flip Chip Ball Grid Array (micro-FCBGA) package. The information provided in this document is for reference only and additional validation must be performed prior to implementing the designs into final production. The intent of this document is to assist each original equipment manufacturer (OEM) with the development of thermal solutions for their individual designs. The final heatsink solution, including the heatsink, attachment method, and thermal interface material (TIM) must comply with the mechanical design, environmental, and reliability requirements delineated in the processor datasheet. It is the responsibility of each OEM to validate the thermal solution design with their specific applications.

This document addresses thermal and mechanical design specifications for the Intel Core 2 Duo processor only. For thermal design information on other Intel components, refer to the respective component datasheets.

1.1Design Flow

Several tools are available from Intel to assist with the development of a reliable, cost-effective thermal solution. Figure 1 illustrates a typical thermal solution design process with available tools noted. The tools are available through your local Intel field sales representative.

 

Intel® Core™ 2 Duo Mobile Processors on 45-nm process for Embedded Applications

June 2008

TDG

Order Number: 320028-001

6

Image 6
Contents Thermal Design Guide JuneTDG Contents Figures TablesRevision History First Public releaseIntroduction Design FlowDefinition of Terms Definition of Terms Sheet 1Reference Documents Thermal Design Tool AvailabilityDefinition of Terms Sheet 2 Package Information Maximum Allowed Component Temperature Thermal SpecificationsThermal Design Power Thermal Specifications for the Intel Core2 Duo processorPackage Keep Out Zones Requirements Mechanical SpecificationsPackage Mechanical Requirements Board Level Keep Out Zone RequirementsPrimary Side Keep Out Zone Requirements- Micro-FCPGA Primary Side Keep Out Zone Requirements- Micro-FCBGA Secondary Side Keep Out Zone Requirements Thermal Solution Requirements Thermal Solution CharacterizationEquation 3. Maximum Allowable Resistance Equation 4. Required Performance of the HeatsinkRequired Heatsink Thermal Performance Ψ JA TDPReference Thermal Solutions Atca Reference Thermal SolutionKeep Out Zone Requirements Thermal Performance1U+ Reference Heatsink Keep Out Zone Requirements Heatsink Thermal Performance vs. Volumetric Airflow Rate Compact PCI Reference HeatsinkHeatsink Fastener Assembly Thermal Interface Material TIMHeatsink Orientation Heatsink Orientation Relative to Airflow DirectionAdditional Thermal Features Die Temperature MeasurementsPower Simulation Software Local Ambient Temperature Measurement GuidelinesActive Heatsink Measurements Measuring TLA with an Active Heatsink Measuring TLA with a Passive Heatsink Reliability Guidelines Reliability RequirementsAppendix a Thermal Solution Component Suppliers Reference HeatsinkAppendix B Mechanical Drawings Mechanical DrawingsCore 2 Duo Mobile Processors-Mechanical Drawings Mechanical Drawings-Core 2 Duo Mobile Processors AdvancedTCA* Reference Heatsink Assembly AdvancedTCA* Reference Heatsink Core 2 Duo Mobile Processors-Mechanical Drawings Mechanical Drawings-Core 2 Duo Mobile Processors CompactPCI* Reference Heatsink Assembly CompactPCI* Reference Heatsink Reference Heatsink PCB Keep Out Requirements Sheet 1 Reference Heatsink PCB Keep Out Requirements Sheet 2 Reference Heatsink Assembly Reference Heatsink

320028-001 specifications

The Intel 320028-001 is a robust processor designed to meet the demands of both consumers and professionals. Built on Intel's advanced microarchitecture, this model showcases a blend of high performance, energy efficiency, and cutting-edge technology.

One of the standout features of the Intel 320028-001 is its impressive clock speed, which ensures rapid data processing capabilities. This processor is designed with multiple cores, allowing it to handle several tasks simultaneously without compromising performance. This multi-core architecture is particularly beneficial for applications that require heavy multitasking or resource-intensive activities such as gaming, video editing, and 3D rendering.

In terms of technology, the Intel 320028-001 leverages Intel’s Turbo Boost technology, which dynamically increases the processor's clock speed to optimize performance based on current workload demands. This results in an efficient balance between performance and power consumption, providing users with the necessary speed when needed while conserving energy during lighter tasks.

Another key characteristic of the Intel 320028-001 is its compatibility with Intel Hyper-Threading technology. This allows each core to handle two threads simultaneously, resulting in improved multitasking capabilities and enhanced performance for threaded applications. This feature is particularly advantageous for applications that can utilize parallel processing, significantly enhancing overall system responsiveness.

Additionally, the Intel 320028-001 utilizes Intel’s Smart Cache technology. This shared cache allows for quicker data access and efficient memory usage, further optimizing execution speeds and minimizing latency. The processor is also designed to work seamlessly with the latest in memory technologies, supporting DDR4 memory for increased bandwidth and improved overall system performance.

Security features in the Intel 320028-001 include Intel Software Guard Extensions (SGX), which provide hardware-based safeguards for sensitive information, an essential component for business applications and personal data protection.

Overall, the Intel 320028-001 stands out with a combination of high-performance specs, advanced features, and energy-efficient operation, making it an excellent choice for a wide range of computing needs. Whether for gaming, professional applications, or daily use, this processor offers the reliability and performance that users expect from Intel.