Cisco Systems RSP8 manual Product Description, Topics discussed in this section are

Page 3

Product Description

Ordering Documentation, page 89

Documentation Feedback, page 89

Obtaining Technical Assistance, page 89

Obtaining Additional Publications and Information, page 91

Product Description

The topics discussed in this section are:

CPU, page 5

Memory Components, page 6

Jumpers, page 7

LEDs, page 7

PC Card Slots, page 8

Serial Ports, page 8

Specifications, page 9

System Software, page 9

The RSP8 supports the VIP2, VIP4 and the VIP6-80 in the Cisco 7505, Cisco 7507, Cisco 7507-MX, Cisco 7513, Cisco 7513-MX, and Cisco 7576 routers. (See Figure 1 and Figure 2.) The RSP8 is available as an upgrade to an existing RSP4, RSP2, or RSP1. The RSP8 contains the central processing unit (CPU) and most of the memory components for the router. The Cisco IOS software images reside in Flash memory, located on the RSP8:

In the form of a single in-line memory module (SIMM) (U1 in Figure 2)

On up to two PC Cards (called Flash memory cards), or two Flash Disks, or a combination of PC Cards and Flash Disks that insert in the two PC Card slots (slot 0 and slot 1)

Note For the Cisco IOS releases that are supported on the RSP8, refer to the “System Software” section on page 9 and to the Software Advisor at http://www.cisco.com/cgi-bin/Support/CompNav/Index.pl.

Storing the IOS software images in Flash memory enables you to download and boot from upgraded Cisco IOS software images remotely or from software images resident in the RSP8 Flash memory, without having to remove and replace read-only memory (ROM) devices.

The RSP8 also contains:

Most of the additional memory components used by the system, including 16-d onboard Flash memory and up to two Flash memory cards (16-, 20-, or 32-MB Flash memory card, with a 20-MB Flash memory card being the shipping default).

Air-temperature sensors for environmental monitoring. (All of the logic for the environmental monitoring functions is contained on the router interface card.)

In addition to running the system software from DRAM, the RSP8 contains and executes the following management functions that control the system:

Sending and receiving routing protocol updates

Managing tables and caches

Route Switch Processor (RSP8) Installation and Configuration Guide

 

OL-4920-02

3

 

 

 

Image 3
Contents Document Contents Cisco.com, Obtaining Documentation, Related DocumentationTopics discussed in this section are Product DescriptionRSP8-Horizontal Front-Panel View Monitoring interface and environmental statusU12 Flash Eprom ROMmon Bus connectors Auxiliary portMemory Components Shows the memory components on the RSP8Type Size Quantity Description Location Flash Memory Cards and Flash Disks There are no user-configurable jumpers on the RSP8Jumpers LEDsPC Card Slots Serial PortsLED Label Color State Indication System Software SpecificationsLists the physical specifications for the RSP8 SpecificationsInstallation Prerequisites Safety GuidelinesSafety Warnings Installation Prerequisites Telephone Wiring Guidelines Electrical Equipment GuidelinesPreventing Electrostatic Discharge Damage Compatibility Requirements Chassis Slot and Dram RequirementsMemory Requirements Hardware Prerequisites Software PrerequisitesMicrocode Requirements List of Parts and ToolsRemoving the RSP8 Installing the RSP8Ejector Levers and Captive Installation Screw Replacing the RSP8 Handling the RSP8 During Removal and Installation Connecting a Console Terminal Connecting to the Auxiliary PortUsing the Y-Cables for Console and Auxiliary Connections Shows the console Y-cable and shows the auxiliary Y-cable Restarting the SystemInstalling the RSP8 Router show version Using the Exec Command Interpreter Configuring the Router for a Single RSP8HSA Active and Standby Operation Configuring High System AvailabilityHSA Implementation Methods HSA System Requirements HSA Configuration Task ListRouter# copy system running-config nvramstartup-config Specifying the Default Standby RSPCommand Purpose Router# configure terminalEnsuring that Both RSPs Contain the Same System Image Router# show controller cbus Ensuring that Both RSPs Contain the Same Microcode ImageRouter# dir slavebootflash slaveslot0 slaveslot1 Router# copy bootflashfilename slot0filenameSlot1filename slavebootslotfilename Router# copy source bootflash slot0 slot1 Determines whether the standby RSP contains the sameCopies a different system image to the active RSP Upgrading to a New Software Version Example Bootflash Now view the standby software image location and versionRouter# copy tftp slot0rsp-pv-mz.120-22.3.S1 Routerconfig# boot system tftp rsp-pv-mz.120-23.S Routerconfig# config-register 0x010FBacking Up with an Older Software Version Example ANB Router# show bootflash Delete the rsp-pv-mz.120-22.3.S1image from the standby RSPRouter# delete slaveslot0rsp-pv-mz.120-22.3.S1 Router# copy system running-config startup-config Manually Setting Environment Variables on the Standby RSPRouterconfig# slave sync config Router# copy running-config startup-configSpecifies which image the standby runs Routerconfig# hw-module slot imageMonitoring and Maintaining HSA Operation Information under that RSP’s ROM monitor controlEnabling High Availability Features High Availability Feature OverviewRouter# slave sync config Enabling High Availability Features Hardware and Software Prerequisites Installation ProceduresThis completes the procedure to enable the router Enabling the RouterCopying an Image onto an RSP Router# copy tftp slaveslot slot-number Router# copy tftp slot slot-numberRouter# show version Setting the Config-Register Boot VariableConfiguring RPR and RPR+ Routerconfig# boot system flashRouter# hw-module sec-cpu reset Routerconfig# hw-module slot slot-numberimage file-specConfiguring RPR and RPR+ Example Verifying RPR and RPR+Router# show redundancy Configuring a Stateful Switchover SSO Saves the configuration changes to the startup Configuration fileVerifying SSO Router# show redundancy client Router# show redundancy states my state = 13 -ACTIVEConfiguring Nonstop Forwarding NSF Configuring CEF NSFConfiguring BGP NSF Graceful-restart Configuring Ospf NSFConfiguring IS-IS NSF As-numberSeconds adjacency Verifying CEF NSFRouter# show ip bgp neighbors Verifying BGP NSFVerifying IS-IS NSF Running-config commandThis example, note the presence of NSF restart enabled Verifying Ospf NSFNetworking device NSF Troubleshooting Tips Troubleshooting NSF FeaturesIS-IS NSF Configuration Example BGP NSF Configuration ExampleBGP NSF Neighbor Device Configuration Example Ospf NSF Configuration ExamplePerforming a Fast Software Upgrade Routerconfig# hw-module slot slot-number image Specifies the image to be used by the standby RSP atName of the image of the standby RSP Routerconfig# service single-slot-reload-enable Configuring SlcrFast Software Upgrade Example Router# redundancy force-switchoverDisabling Slcr RPR, RPR+, SSO, and FSU Troubleshooting TipsSlcr Configuration Example Slcr Troubleshooting TipsVerifying LEDs Troubleshooting the InstallationSystem Power LEDs Monitoring and Maintaining the Active and Standby RSPsNormal RSP8 LEDsVerifying System Startup Sequence Troubleshooting the Installation Troubleshooting a Failed RSP8 Troubleshooting a Router That is Failing to BootDisplaying a Stack Trace of an RSP Maintenance InformationSaving and Retrieving a Configuration File Reloading a Failed RSPRouter# ping Using the ping Command to Ensure ConnectivityCopy to this file Copying the Configuration FileSection on page 24 to enable the privileged level Might include the name or address of a default file serverRouter# show startup-config Retrieving the Configuration File Replacing and Upgrading Dram DIMMs Sdram Dimm Product Numbers Quantity Dram Sockets TotalsPolarization notch Removing DIMMsInserting the Dimm Installing New DIMMsChecking the RSP Memory Upgrade Recovering a Lost PasswordInitialize the router using the i command as follows Console Port Signals Pin Signal Direction DescriptionReference Information Auxiliary Port Signals Female DB-25 Pins Male DB-25 Pins Signal DescriptionConsole and Auxiliary Y-Cable Pinouts P1-7 J1-7 and J2-7 Ground P1-8 J1-8 and J2-8 Software Configuration Register SettingsMale DB-25 Pins Female DB-25 Pins Signal Description P1-5 J1-5 and J2-5Bit Number Hexadecimal Meaning Boot Field MeaningStays at the system bootstrap prompt Boots the first system image in onboard Flash memoryTftp flash filename Changing SettingsRouterconfig# config-register 0xvalue Bit MeaningsAction/Filename Bit Baud Bit Enabling a Boot from Flash MemoryRouterconfig# boot system flash devicefilename Bit Address net hostEnabling a Boot from the Flash Disk Cisco.com Using Flash MemorySystem# copy running-config startup-config Obtaining DocumentationDocumentation Feedback Obtaining Technical AssistanceDocumentation CD-ROM Ordering DocumentationTAC Case Priority Definitions Cisco TAC Website Opening a TAC CaseObtaining Additional Publications and Information Copyright 2004 Cisco Systems, Inc. All rights reserved