Cisco Systems RSP8 manual Enabling High Availability Features

Page 42

Enabling High Availability Features

SLCR is disabled by default and needs to be manually configured. When SLCR is enabled, and more than two linecards crash simultaneously, all line cards will be reset.

For more information on how to configure SLCR, refer to the Cisco 7500 Single Line Card Reload feature module at http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/120newft/120limit/120s/120s13 /slcr.htm.

Route Processor Redundancy (RPR)—Speeds recovery of a failed router by accelerating switchover to the standby RSP. The standby RSP is preinitialized with the same full Cisco IOS software image as on the active RSP. When the active RSP fails, the standby RSP takes over. The line cards are OIR inserted by the standby RSP during the switchover. Switchover time is reduced to 4 to 5 minutes with RPR.

RPR is disabled by default, and needs to be manually configured. For more information on RPR, refer to the Route Processor Redundancy and Fast Software Upgrade on Cisco 7500 Series Routers feature module available online at http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/120newft/120limit/120st/120st 16/st_rpr7x.htm.

Route Processor Redundancy Plus (RPR+)—Like RPR, RPR+ speeds recovery of a failed router by accelerating switchover to the standby RSP. The RPR+ feature, an enhancement of RPR, prevents a VIP from being reset and reloaded when a switchover occurs between the active and standby RSPs. Switchover time is reduced because VIPs are not reset, microcode does not reload on the VIPs, and the time needed to parse the configuration is eliminated.

Online removal of the active RSP causes all line cards to reset and reload, which is equivalent to an RPR switchover, and results in a longer switchover time. When it is necessary to remove the active RSP from the system, first issue a switchover command to switch from the active RSP to the standby RSP.

RPR+ is disabled by default, and needs to be manually configured. RPR+ does not support the Legacy interface processor card. The system will default to RPR if the router includes an Legacy interface processor card. For more information on how to configure RPR+, refer to the

RPR+ on Cisco 7500 Series Routers feature module, available online at http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/120newft/120limit/120st/120st19/st _rpr2.htm.

Fast Software Upgrade (FSU)—Accelerates switchover to a new software image. Fast Software Upgrade permits users to upgrade to an interim release or next minor release Cisco IOS image by uploading it to the standby RSP first. After loading the new Cisco IOS image on the standby RSP, the user can issue a command to switch to the standby RSP, and all the line cards will be reloaded, similar to what occurs in RPR. This feature allows users to upgrade Cisco IOS on their Cisco 7500 routers with much less interruption to service than previously experienced.

For more information on FSU, refer to the Route Processor Redundancy and Fast Software Upgrade on Cisco 7500 Series Routers feature module available online at http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/120newft/120limit/120st/120st 16/st_rpr7x.htm.

Stateful Switchover (SSO)—Based on RPR+, SSO allows the active RSP to pass the necessary state information of key routing and interface protocols to the standby RSP upon switchover, which reduces the time for the standby RSP to learn and converge routes.

SSO is disabled by default, and needs to be manually configured. SSO does not support the Legacy interface processor cards. For more information on how to configure SSO, refer to the Stateful Switchover feature module available online at http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/120newft/120limit/120s/120s22/sso 120s.htm.

Route Switch Processor (RSP8) Installation and Configuration Guide

42

OL-4920-02

 

 

Image 42
Contents Document Contents Related Documentation Cisco.com, Obtaining Documentation,Product Description Topics discussed in this section areMonitoring interface and environmental status RSP8-Horizontal Front-Panel ViewFlash Eprom ROMmon Bus connectors Auxiliary port U12Memory Components Shows the memory components on the RSP8Type Size Quantity Description Location LEDs There are no user-configurable jumpers on the RSP8Jumpers Flash Memory Cards and Flash DisksPC Card Slots Serial PortsLED Label Color State Indication Specifications SpecificationsLists the physical specifications for the RSP8 System SoftwareInstallation Prerequisites Safety GuidelinesSafety Warnings Installation Prerequisites Telephone Wiring Guidelines Electrical Equipment GuidelinesPreventing Electrostatic Discharge Damage Compatibility Requirements Chassis Slot and Dram RequirementsMemory Requirements Software Prerequisites Hardware PrerequisitesList of Parts and Tools Microcode RequirementsInstalling the RSP8 Removing the RSP8Ejector Levers and Captive Installation Screw Replacing the RSP8 Handling the RSP8 During Removal and Installation Connecting a Console Terminal Connecting to the Auxiliary PortUsing the Y-Cables for Console and Auxiliary Connections Restarting the System Shows the console Y-cable and shows the auxiliary Y-cableInstalling the RSP8 Router show version Configuring the Router for a Single RSP8 Using the Exec Command InterpreterConfiguring High System Availability HSA Active and Standby OperationHSA Implementation Methods HSA Configuration Task List HSA System RequirementsRouter# configure terminal Specifying the Default Standby RSPCommand Purpose Router# copy system running-config nvramstartup-configEnsuring that Both RSPs Contain the Same System Image Ensuring that Both RSPs Contain the Same Microcode Image Router# show controller cbusRouter# dir slavebootflash slaveslot0 slaveslot1 Router# copy bootflashfilename slot0filenameSlot1filename slavebootslotfilename Router# copy source bootflash slot0 slot1 Determines whether the standby RSP contains the sameCopies a different system image to the active RSP Upgrading to a New Software Version Example Bootflash Now view the standby software image location and versionRouter# copy tftp slot0rsp-pv-mz.120-22.3.S1 Routerconfig# boot system tftp rsp-pv-mz.120-23.S Routerconfig# config-register 0x010FBacking Up with an Older Software Version Example ANB Router# show bootflash Delete the rsp-pv-mz.120-22.3.S1image from the standby RSPRouter# delete slaveslot0rsp-pv-mz.120-22.3.S1 Manually Setting Environment Variables on the Standby RSP Router# copy system running-config startup-configRouter# copy running-config startup-config Routerconfig# slave sync configInformation under that RSP’s ROM monitor control Routerconfig# hw-module slot imageMonitoring and Maintaining HSA Operation Specifies which image the standby runsEnabling High Availability Features High Availability Feature OverviewRouter# slave sync config Enabling High Availability Features Installation Procedures Hardware and Software PrerequisitesThis completes the procedure to enable the router Enabling the RouterCopying an Image onto an RSP Router# copy tftp slot slot-number Router# copy tftp slaveslot slot-numberRouterconfig# boot system flash Setting the Config-Register Boot VariableConfiguring RPR and RPR+ Router# show versionRouterconfig# hw-module slot slot-numberimage file-spec Router# hw-module sec-cpu resetConfiguring RPR and RPR+ Example Verifying RPR and RPR+Router# show redundancy Configuring a Stateful Switchover SSO Saves the configuration changes to the startup Configuration fileVerifying SSO Router# show redundancy states my state = 13 -ACTIVE Router# show redundancy clientConfiguring Nonstop Forwarding NSF Configuring CEF NSFConfiguring BGP NSF As-number Configuring Ospf NSFConfiguring IS-IS NSF Graceful-restartVerifying CEF NSF Seconds adjacencyVerifying BGP NSF Router# show ip bgp neighborsVerifying Ospf NSF Running-config commandThis example, note the presence of NSF restart enabled Verifying IS-IS NSFNetworking device Troubleshooting NSF Features NSF Troubleshooting TipsOspf NSF Configuration Example BGP NSF Configuration ExampleBGP NSF Neighbor Device Configuration Example IS-IS NSF Configuration ExamplePerforming a Fast Software Upgrade Routerconfig# hw-module slot slot-number image Specifies the image to be used by the standby RSP atName of the image of the standby RSP Router# redundancy force-switchover Configuring SlcrFast Software Upgrade Example Routerconfig# service single-slot-reload-enableSlcr Troubleshooting Tips RPR, RPR+, SSO, and FSU Troubleshooting TipsSlcr Configuration Example Disabling SlcrMonitoring and Maintaining the Active and Standby RSPs Troubleshooting the InstallationSystem Power LEDs Verifying LEDsRSP8 LEDs NormalVerifying System Startup Sequence Troubleshooting the Installation Troubleshooting a Router That is Failing to Boot Troubleshooting a Failed RSP8Reloading a Failed RSP Maintenance InformationSaving and Retrieving a Configuration File Displaying a Stack Trace of an RSPUsing the ping Command to Ensure Connectivity Router# pingMight include the name or address of a default file server Copying the Configuration FileSection on page 24 to enable the privileged level Copy to this fileRouter# show startup-config Retrieving the Configuration File Replacing and Upgrading Dram DIMMs Product Numbers Quantity Dram Sockets Totals Sdram DimmRemoving DIMMs Polarization notchInstalling New DIMMs Inserting the DimmRecovering a Lost Password Checking the RSP Memory UpgradeInitialize the router using the i command as follows Console Port Signals Pin Signal Direction DescriptionReference Information Auxiliary Port Signals Female DB-25 Pins Male DB-25 Pins Signal DescriptionConsole and Auxiliary Y-Cable Pinouts P1-5 J1-5 and J2-5 Software Configuration Register SettingsMale DB-25 Pins Female DB-25 Pins Signal Description P1-7 J1-7 and J2-7 Ground P1-8 J1-8 and J2-8Boots the first system image in onboard Flash memory Boot Field MeaningStays at the system bootstrap prompt Bit Number Hexadecimal MeaningBit Meanings Changing SettingsRouterconfig# config-register 0xvalue Tftp flash filenameAction/Filename Bit Bit Address net host Enabling a Boot from Flash MemoryRouterconfig# boot system flash devicefilename Baud BitEnabling a Boot from the Flash Disk Obtaining Documentation Using Flash MemorySystem# copy running-config startup-config Cisco.comOrdering Documentation Obtaining Technical AssistanceDocumentation CD-ROM Documentation FeedbackCisco TAC Website Opening a TAC Case TAC Case Priority DefinitionsObtaining Additional Publications and Information Copyright 2004 Cisco Systems, Inc. All rights reserved