Cypress CY7C1529AV18 manual TAP AC Switching Characteristics, TAP Timing and Test Conditions

Page 16

CY7C1522AV18, CY7C1529AV18

CY7C1523AV18, CY7C1524AV18

TAP AC Switching Characteristics

Over the Operating Range [13, 14]

Parameter

Description

Min

Max

Unit

tTCYC

TCK Clock Cycle Time

50

 

ns

tTF

TCK Clock Frequency

 

20

MHz

tTH

TCK Clock HIGH

20

 

ns

tTL

TCK Clock LOW

20

 

ns

Setup Times

 

 

 

 

 

 

 

 

 

tTMSS

TMS Setup to TCK Clock Rise

5

 

ns

tTDIS

TDI Setup to TCK Clock Rise

5

 

ns

tCS

Capture Setup to TCK Rise

5

 

ns

Hold Times

 

 

 

 

tTMSH

TMS Hold after TCK Clock Rise

5

 

ns

tTDIH

TDI Hold after Clock Rise

5

 

ns

tCH

Capture Hold after Clock Rise

5

 

ns

Output Times

 

 

 

 

 

 

 

 

 

tTDOV

TCK Clock LOW to TDO Valid

 

10

ns

tTDOX

TCK Clock LOW to TDO Invalid

0

 

ns

TAP Timing and Test Conditions

Figure 2 shows the TAP timing and test conditions. [14]

Figure 2. TAP Timing and Test Conditions

 

 

 

0.9V

 

 

 

 

 

 

50Ω

 

 

 

 

 

 

 

 

 

 

 

 

TDO

 

 

 

 

 

 

Z0

= 50Ω

 

 

 

CL = 20 pF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ALL INPUT PULSES

1.8V

0.9V

0V

(a)GND

Test Clock

TCK

Test Mode Select

TMS

Test Data In

TDI

Test Data Out

TDO

tTH

tTMSS

tTDIS

tTL

tTCYC

tTMSH

tTDIH

tTDOV

 

 

 

t

 

 

 

 

 

 

 

 

TDOX

Notes

13.tCS and tCH refer to the setup and hold time requirements of latching data from the boundary scan register.

14.Test conditions are specified using the load in TAP AC Test Conditions. tR/tF = 1 ns.

Document #: 001-06981 Rev. *D

Page 16 of 30

[+] Feedback

Image 16
Contents Features ConfigurationsFunctional Description Selection GuideDoff Logic Block Diagram CY7C1522AV18CLK Logic Block Diagram CY7C1523AV18 Logic Block Diagram CY7C1524AV18Pin Configuration Ball Fbga 15 x 17 x 1.4 mm PinoutCY7C1522AV18 8M x CY7C1529AV18 8M xCY7C1523AV18 4M x CY7C1524AV18 2M xPin Name Pin Description Pin DefinitionsSynchronous Read/Write Input. When Power Supply Inputs to the Core of the Device Power Supply Inputs for the Outputs of the DeviceReferenced with Respect to TDO for JtagFunctional Overview Application Example Application ExampleTruth Table Write Cycle DescriptionsLD R/W BWS0/ BWS1 NWS0 NWS1BWS0 BWS0 BWS1 BWS2 BWS3Ieee 1149.1 Serial Boundary Scan Jtag Idcode TAP Controller State Diagram TAP Controller Block Diagram TAP Electrical CharacteristicsTDI TCKTAP AC Switching Characteristics TAP Timing and Test ConditionsIdentification Register Definitions Scan Register SizesInstruction Codes Register Name Bit SizeBoundary Scan Order Bit # Bump IDPower Up Sequence Power Up Sequence in DDR-II SramDLL Constraints DC Electrical Characteristics Electrical CharacteristicsMaximum Ratings AC Electrical Characteristics Capacitance Thermal ResistanceParameter Description Test Conditions Max Unit Parameter Description Test Conditions Fbga UnitHigh Switching CharacteristicsLOW Static to DLL Reset DLL TimingNOP Read Write Switching WaveformsBurst Ordering Information 250 167 Package Diagram Ball Fbga 15 x 17 x 1.4 mmSales, Solutions, and Legal Information Worldwide Sales and Design Support Products PSoC SolutionsDocument History REV ECN no Submission ORIG. Description of Change Date

CY7C1529AV18, CY7C1523AV18, CY7C1524AV18, CY7C1522AV18 specifications

Cypress Semiconductor has established itself as a prominent player in the memory solutions market, and its family of high-performance synchronous static random-access memory (SRAM) devices has garnered significant attention. Among these, the CY7C1522AV18, CY7C1524AV18, CY7C1523AV18, and CY7C1529AV18 stand out due to their advanced features and reliable performance.

The CY7C1522AV18 is a 2 Megabit SRAM device designed to deliver fast access times with a dual-port architecture. This memory solution supports a 3.0V to 3.6V power supply range. With a high-speed operation of up to 167 MHz, it is ideal for applications that require rapid data processing and retrieval. Its unique architecture allows simultaneous read and write operations, which enhances throughput and efficiency in data handling.

Conversely, the CY7C1524AV18 is a 4 Megabit SRAM that builds upon these capabilities, offering an even larger storage option while maintaining similar speed and voltage specifications. Both devices come with Cyclical Redundancy Check (CRC) for data integrity, ensuring reliability in mission-critical applications. Additionally, these SRAMs feature a simple asynchronous interface, making integration into existing systems remarkably straightforward.

The CY7C1523AV18 offers a balance of features with its 3 Megabit capacity. Similar to its counterparts, this device also presents dual-port capabilities, which facilitate quick data access without bottlenecks, proving advantageous in high-performance computing environments.

Lastly, the CY7C1529AV18 rounds out the family with its impressive 9 Megabit capacity, providing ample memory for more extensive applications. Its enhanced architecture makes it suitable for advanced embedded systems where speed and reliability are paramount.

All four devices leverage Cypress’s innovative Synchronous SRAM technology, which offers low latency and high bandwidth, making them suited for high-performance applications such as networking, telecommunications, and industrial control systems. The memory chips are built with robust features including low power consumption modes and wide operating temperature ranges, enhancing their versatility in various environments.

In conclusion, the CYPRESS CY7C1522AV18, CY7C1524AV18, CY7C1523AV18, and CY7C1529AV18 are exemplary SRAM solutions that combine speed, capacity, and reliability, catering to a broad spectrum of contemporary electronic systems. Whether for embedded applications or high-speed network devices, these memory solutions continue to be at the forefront of technology advancements.