Cypress CY7C1529AV18, CY7C1524AV18 manual Maximum Ratings, DC Electrical Characteristics

Page 20

CY7C1522AV18, CY7C1529AV18 CY7C1523AV18, CY7C1524AV18

Maximum Ratings

Exceeding maximum ratings may impair the useful life of the device. These user guidelines are not tested.

Storage Temperature ................................. –65°C to +150°C

Ambient Temperature with Power Applied.. –55°C to +125°C

Supply Voltage on VDD Relative to GND

–0.5V to +2.9V

Supply Voltage on VDDQ Relative to GND

–0.5V to +VDD

DC Applied to Outputs in High-Z

–0.5V to VDDQ + 0.3V

DC Input Voltage [11]

–0.5V to V + 0.3V

 

 

DD

Current into Outputs (LOW)

 

20 mA

Static Discharge Voltage (MIL-STD-883, M. 3015)..

> 2001V

Latch-up Current

...................................................

 

> 200 mA

Operating Range

 

 

 

 

 

 

 

 

 

Ambient

VDD [15]

VDDQ [15]

Range

 

Temperature (TA)

Commercial

 

0°C to +70°C

1.8 ± 0.1V

1.4V to

 

 

 

 

VDD

Industrial

 

–40°C to +85°C

 

Electrical Characteristics

DC Electrical Characteristics

Over the Operating Range [12]

Parameter

Description

Test Conditions

Min

Typ

Max

Unit

VDD

Power Supply Voltage

 

 

 

1.7

1.8

1.9

V

VDDQ

IO Supply Voltage

 

 

 

1.4

1.5

VDD

V

VOH

Output HIGH Voltage

Note 16

 

 

VDDQ/2 – 0.12

 

VDDQ/2 + 0.12

V

VOL

Output LOW Voltage

Note 17

 

 

VDDQ/2 – 0.12

 

VDDQ/2 + 0.12

V

VOH(LOW)

Output HIGH Voltage

IOH = 0.1 mA, Nominal Impedance

 

VDDQ – 0.2

 

VDDQ

V

VOL(LOW)

Output LOW Voltage

IOL = 0.1 mA, Nominal Impedance

 

VSS

 

0.2

V

VIH

Input HIGH Voltage

 

 

 

VREF + 0.1

 

VDDQ + 0.3

V

VIL

Input LOW Voltage

 

 

 

–0.3

 

VREF – 0.1

V

IX

Input Leakage Current

GND VI VDDQ

 

 

5

 

5

μA

IOZ

Output Leakage Current

GND VI VDDQ, Output Disabled

 

5

 

5

μA

VREF

Input Reference Voltage [18]

Typical Value = 0.75V

 

 

0.68

0.75

0.95

V

IDD [19]

VDD Operating Supply

VDD = Max,

300MHz

(x8)

 

 

900

mA

 

 

IOUT = 0 mA,

 

 

 

 

 

 

 

 

 

(x9)

 

 

900

 

 

 

f = fMAX = 1/tCYC

 

 

 

 

 

 

 

 

 

(x18)

 

 

950

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(x36)

 

 

1080

 

 

 

 

 

 

 

 

 

 

 

 

 

278MHz

(x8)

 

 

855

mA

 

 

 

 

 

 

 

 

 

 

 

 

 

(x9)

 

 

855

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(x18)

 

 

880

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(x36)

 

 

1000

 

 

 

 

 

 

 

 

 

 

 

 

 

250MHz

(x8)

 

 

800

mA

 

 

 

 

 

 

 

 

 

 

 

 

 

(x9)

 

 

800

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(x18)

 

 

800

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(x36)

 

 

900

 

 

 

 

 

 

 

 

 

 

Notes

15.Power up: assumes a linear ramp from 0V to VDD(min) within 200 ms. During this time VIH < VDD and VDDQ < VDD.

16.Outputs are impedance controlled. IOH = –(VDDQ/2)/(RQ/5) for values of 175Ω < RQ < 350Ω.

17.Outputs are impedance controlled. IOL = (VDDQ/2)/(RQ/5) for values of 175Ω < RQ < 350Ω.

18.VREF(min) = 0.68V or 0.46VDDQ, whichever is larger, VREF(max) = 0.95V or 0.54VDDQ, whichever is smaller.

19.The operation current is calculated with 50% read cycle and 50% write cycle.

Document #: 001-06981 Rev. *D

Page 20 of 30

[+] Feedback

Image 20
Contents Features ConfigurationsFunctional Description Selection GuideCLK Logic Block Diagram CY7C1522AV18Doff Logic Block Diagram CY7C1523AV18 Logic Block Diagram CY7C1524AV18Pin Configuration Ball Fbga 15 x 17 x 1.4 mm PinoutCY7C1522AV18 8M x CY7C1529AV18 8M xCY7C1523AV18 4M x CY7C1524AV18 2M xSynchronous Read/Write Input. When Pin DefinitionsPin Name Pin Description Power Supply Inputs to the Core of the Device Power Supply Inputs for the Outputs of the DeviceReferenced with Respect to TDO for JtagFunctional Overview Application Example Application ExampleTruth Table Write Cycle DescriptionsLD R/W BWS0/ BWS1 NWS0 NWS1BWS0 BWS0 BWS1 BWS2 BWS3Ieee 1149.1 Serial Boundary Scan Jtag Idcode TAP Controller State Diagram TAP Controller Block Diagram TAP Electrical CharacteristicsTDI TCKTAP AC Switching Characteristics TAP Timing and Test ConditionsIdentification Register Definitions Scan Register SizesInstruction Codes Register Name Bit SizeBoundary Scan Order Bit # Bump IDDLL Constraints Power Up Sequence in DDR-II SramPower Up Sequence Maximum Ratings Electrical CharacteristicsDC Electrical Characteristics AC Electrical Characteristics Capacitance Thermal ResistanceParameter Description Test Conditions Max Unit Parameter Description Test Conditions Fbga UnitLOW Switching CharacteristicsHigh Static to DLL Reset DLL TimingBurst Switching WaveformsNOP Read Write Ordering Information 250 167 Package Diagram Ball Fbga 15 x 17 x 1.4 mmSales, Solutions, and Legal Information Worldwide Sales and Design Support Products PSoC SolutionsDocument History REV ECN no Submission ORIG. Description of Change Date

CY7C1529AV18, CY7C1523AV18, CY7C1524AV18, CY7C1522AV18 specifications

Cypress Semiconductor has established itself as a prominent player in the memory solutions market, and its family of high-performance synchronous static random-access memory (SRAM) devices has garnered significant attention. Among these, the CY7C1522AV18, CY7C1524AV18, CY7C1523AV18, and CY7C1529AV18 stand out due to their advanced features and reliable performance.

The CY7C1522AV18 is a 2 Megabit SRAM device designed to deliver fast access times with a dual-port architecture. This memory solution supports a 3.0V to 3.6V power supply range. With a high-speed operation of up to 167 MHz, it is ideal for applications that require rapid data processing and retrieval. Its unique architecture allows simultaneous read and write operations, which enhances throughput and efficiency in data handling.

Conversely, the CY7C1524AV18 is a 4 Megabit SRAM that builds upon these capabilities, offering an even larger storage option while maintaining similar speed and voltage specifications. Both devices come with Cyclical Redundancy Check (CRC) for data integrity, ensuring reliability in mission-critical applications. Additionally, these SRAMs feature a simple asynchronous interface, making integration into existing systems remarkably straightforward.

The CY7C1523AV18 offers a balance of features with its 3 Megabit capacity. Similar to its counterparts, this device also presents dual-port capabilities, which facilitate quick data access without bottlenecks, proving advantageous in high-performance computing environments.

Lastly, the CY7C1529AV18 rounds out the family with its impressive 9 Megabit capacity, providing ample memory for more extensive applications. Its enhanced architecture makes it suitable for advanced embedded systems where speed and reliability are paramount.

All four devices leverage Cypress’s innovative Synchronous SRAM technology, which offers low latency and high bandwidth, making them suited for high-performance applications such as networking, telecommunications, and industrial control systems. The memory chips are built with robust features including low power consumption modes and wide operating temperature ranges, enhancing their versatility in various environments.

In conclusion, the CYPRESS CY7C1522AV18, CY7C1524AV18, CY7C1523AV18, and CY7C1529AV18 are exemplary SRAM solutions that combine speed, capacity, and reliability, catering to a broad spectrum of contemporary electronic systems. Whether for embedded applications or high-speed network devices, these memory solutions continue to be at the forefront of technology advancements.