Cooper Bussmann CT02MAN manual Uses Permitted. B In Industrial Establishments

Page 16
[see Section 392.3(B)]

instrumentation and data handling systems. These are very critical circuits that impact on facility safety and on product quality. Type ITC cable must be supported and secured at intervals not exceeding 6 feet [See Section 727.4].

Type ITC Cable may be installed in cable trays in hazardous (classified) areas as permitted in Articles 392, 501, 502, 504 and 505. It states in Article 727 that Type ITC cables that comply with the crush and impact requirements of Type MC cable and are identified for such use, are permitted as open wiring in lengths not to exceed 50 ft. between a cable tray and the utilization equipment or device. Where a cable tray wiring system containing Type ITC cables will be exposed to any significant amount of hot metal splatter from welding or the torch cutting of metal during construction or maintenance activities, temporary metal or plywood covers should be installed on the cable tray to prevent cable jacket or conductor insulation damage. It is desirable to use only quality Type ITC cables that will pass the IEEE 383 and UL Vertical Flame Tests (70,000BTU/hr).

Type PLTC Cable: Power-Limited Tray Cable (Sections 725-61(C), and 725-71(E)). This is a multiconductor cable with a flame retardant nonmetallic sheath. The No. 22 through No. 12 insulated conductors in the cables are 300 volt rated. A metallic shield or a metallized foil shield with drain wire usually encloses the cable's conductors. This cable type has high usage in communication, data processing, fire protection, signaling, and industrial instrumentation wiring systems.

There are versions of this cable with insulation and jacket systems made of materials with low smoke emission and low flame spread properties which make them desirable for use in plenums. In Industrial Establishments where the conditions of maintenance and supervision ensure that only qualified persons service the installation and where the cable is not subject to physical damage Type PLTC cable may be installed in cable trays hazardous (classified) areas as permitted in Section 501.4(B), 502.4(B) and 504.20. Type PLTC cables that comply with the crush and impact requirements of Type MC cable and are identified for such use, are permitted as open wiring in lengths not to exceed a total of 50 ft. between a cable tray and the utilization equipment or device. In this situation, the cable needs to be supported and secured at intervals not exceeding 6 ft. Where a cable tray wiring system

Cooper B-Line, Inc

containing Type PLTC cables will be exposed to any significant amount of hot metal splatter from welding or the torch cutting of metal during construction or maintenance activities, temporary metal or plywood covers should be installed on the cable tray to prevent cable jacket and conductor insulation damage. It is desirable to use only quality Type PLTC cables that will pass the IEEE 383 and UL Vertical Flame Tests (70,000 BTU/hr). Type PLTC cable assemblies may contain optical fiber members as per the UL 1277 standard.

Optical Fiber Cables (Article 770). The addition of optical fiber cables in the Section 392.3(A) cable list for the 1996 NEC was not a technical change. Optical fiber cables have been allowed to be supported in cable trays as per Section 770.6. Optical fibers may also be present in Type TC cables as per UL Standard 1277.

For the 1999 NEC® code, Article 760 - Fire Alarm Cables and Articles 800 - Multipurpose and Communications Cables were added to the list of cables permitted to be installed in cable tray systems.

For the 1993 NEC®, the general statement in the 1990 NEC® which allowed all types of raceways to be supported by cable trays was replaced by individual statements for each of the ten specific raceway types that may now be supported by cable tray. The chances of any such installations being made are very low, since strut is a more convenient and economic choice than cable tray to support raceway systems.

392.3.Uses Permitted. (B) In Industrial Establishments.

This section limits the installation of single conductor cables and Type MV multiconductor cables in cable trays to qualifying industrial establishments as defined in this section.

Per the 2002 NEC® solid bottom cable trays are now permitted to support single conductor cables only in industrial establishments where conditions of maintenance and supervision ensure that only qualified persons will service the installed cable tray system. However, at this time, no fill rules for single conductor cables in solid bottom cable tray have been established.

Cable Tray Manual

14

Image 16
Contents Cable Tray Manual Page Table of Contents Introduction WHY Cable TRAY? Cable Tray Safety FeaturesCable Tray Dependability Cable Tray Space SavingsDesign Cost Savings Cable Tray Wiring System Cost SavingsMaterial Cost Savings Installation Cost Time Savings Cost Cable Tray vs. ConduitMaintenance Savings Cooper B-Line, Inc AN IN-DEPTH Look AT 2002 NEC Article 392 Cable Tray ScopeSteel Ventilated Trough Center Supported Cable Tray Cable Tray Materials Uses Permitted. a Wiring MethodsDefinition. Cable Tray System Cable Tray Manual Uses Permitted. B In Industrial Establishments 392.3B1a 392.3B1b392.3B1c Uses Permitted. C Equipment Grounding ConductorsSealing and Drainage. E Cable Seals, Class 1, Division 2 502.4B3. Nonincendive Field Wiring Uses Permitted. E Nonmetallic Cable TrayConstruction Specifications. a Strength and Rigidity Uses Not PermittedCable Tray Manual Construction Specifications. B Smooth Edges Construction Specifications. C Corrosion ProtectionConstruction Specifications. D Side Rails Construction Specifications. E FittingsInstallation. a Complete System Construction Specifications. F Nonmetallic Cable TrayNomenclature Installation. B Completed Before Installation Installation. C Supports Installation. D CoversInstallation. F Cables Over Volts Installation. G Through Partitions and WallsInstallation. H Exposed and Accessible Installation. I Adequate Access Grounding. a Metallic Cable Trays EGC Grounding. B Steel or Aluminum Cable Tray Systems Temperature Rise Test Cable Installation. a Cable Splices Cable Installation. B Fastened SecurelyCable installation. C Bushed Conduit and Tubing Cable Installation. D Connected in ParallelSheet 3, Example 392.9A1 392.9A2 392.9E2 392.9F2 Single Diameter Inch Conductor Inches Channel Size AWG Technically Undesirable Installation Interpretation #1 Cable Tray Wiring System Design and Installation Hints Cable Tray Manual Cooper B-Line, Inc Cable Tray Maintenance and Repair Cable Tray AccessoriesFireproofing Cable Tray Cable TRAY. Thermal Contraction and Expansion FRP13B is 128 F. The 125 F line in Table Cable Tray Manual Cooper B-Line, Inc Appendix Pages See Page 29 for Temperature Rise Test illustration Circuit Arrangement for Rigid Conduit Temperature Rise Tests Example NEC .9A1 Example NEC .9A2 Example NEC .9A3 Example NEC .9B Appendix Sheet Cable Tray Sizing Flowchart Start Sizing Cable Tray Per NEC HereYes Ladder Or Vented Trough Fiberglass-Vinyl Ester Resin Project InformationLine Series Cable Channel Wire Basket TrayVentilated Non-Ventilated Cent-R-Rail Cooper B-Line, Inc Cable Tray Manual Line Wire Management Resources Ask the Experts