Cooper Bussmann CT02MAN manual Cable Tray Manual

Page 15

on the use of Type MI cable is that it may not be used where it is exposed to destructive corrosive conditions unless protected by materials suitable for the conditions. Type MI cable without overall nonmetallic coverings may be installed in ducts or plenums used for environmental air and in other space used for environmental air in accordance with Sections 300.22(B) and (C). Cable tray may be installed as a support for Type MI cable in any location except where the cable is installed in a hoistway. Section 332-30 states that MI cable shall be securely supported at intervals not exceeding 6 feet (1.83 m). Type MI cable has a UL two hour fire resistive rating when properly installed. An installation requirement for this rating is that the cable be securely supported every 3 feet. Steel or stainless steel cable trays should be used to support Type MI cable being used for critical circuit service. During severe fire conditions, steel or stainless steel cable tray will remain intact and provide support longer than aluminum or fiberglass reinforced plastic cable trays.

Type MC Cable: Metal-clad cable (Article 330). There are large amounts of Type MC cable installed in industrial plant cable tray systems. This cable is often used for feeder and branch circuit service and provides excellent service when it is properly installed. The metallic sheath may be interlocking metal tape or it may be a smooth or corrugated metal tube. A nonmetallic jacket is often extruded over the aluminum or steel sheath as a corrosion protection measure. Regular MC cable, without nonmetallic sheath, may be supported by cable tray in any hazardous (classified) area except Class I and Class II, Division 1 areas. For Type MC cables to qualify for installation in Class I and Class II Division I areas (Section 501-4(A) (1) (c&d), they must have a gas/vapor tight continuous corrugated aluminum sheath with a suitable plastic jacket over the sheath. They must also contain equipment grounding conductors and listed termination fittings must be used where the cables enter equipment. Type MC Cable employing an impervious metal sheath without overall nonmetallic coverings may be installed in ducts or plenums used for environmental air in accordance with Section 300.22(B) and may be installed in other space used for environmental air in accordance with Section 300.22(C). The maximum support spacing is 6 feet (1.83 m).

Type TC Cable: Power and control tray cable (Article 336). This cable type was added to the

Cable Tray Manual

1975 NEC® (as an item associated with the revision of Article 318-Cable Trays). Type TC cable is a multiconductor cable with a flame retardant nonmetallic sheath that is used for power, lighting, control, and signal circuits. It is the most common cable type installed in cable tray for 480 volt feeders, 480 volt branch circuits, and control circuits. Where Type TC cables comply with the crush and impact requirements of Type MC cable and is identified for such use, they are permitted as open wiring between a cable tray and the utilization equipment or device. In these instances where the cable exits the tray, the cable must be supported and secured at intervals not exceeding 6 feet (See Section 336.10(6)). The service record of UL listed Type TC cable where properly applied and installed has been excellent.

For those installations where the NEC® allows its use, a cost savings is realized by using Type TC cables instead of Type MC cables. Type TC cable may be installed in cable tray in hazardous (classified) industrial plant areas as permitted in Articles 392, 501, 502, 504 and 505 provided the conditions of maintenance and supervision assure that only qualified persons will service the installation [See Section 336.10(3)].

Where a cable tray wiring system containing Type TC cables will be exposed to any significant amount of hot metal splatter from welding or the torch cutting of metal during construction or maintenance activities, temporary metal or plywood covers should be installed on the cable tray in the exposure areas to prevent cable jacket and conductor insulation damage. It is desirable to use only quality Type TC cables that will pass the IEEE 383 and UL Vertical Flame Tests (70,000 BTU/hr). Type TC cable assemblies may contain optical fiber members as per the UL 1277 standard.

Type ITC Cable: Instrumentation Tray Cable (Article 727). Although this was a new cable article in the 1996 NEC®, it is not a new type of cable. Thousands of miles of ITC cable have been installed in industrial situations since the early 1960’s. This is a multiconductor cable that most often has a nonmetallic jacket. The No. 22 through No. 12 insulated conductors in the cables are 300 volt rated. A metallic shield or a metallized foil shield with a drain wire usually encloses the cable’s conductors. These cables are used to transmit the low energy level signals associated with the industrial

Cooper B-Line, Inc

13

Image 15
Contents Cable Tray Manual Page Table of Contents Introduction Cable Tray Safety Features WHY Cable TRAY?Cable Tray Space Savings Cable Tray DependabilityCable Tray Wiring System Cost Savings Design Cost SavingsMaterial Cost Savings Cost Cable Tray vs. Conduit Installation Cost Time SavingsMaintenance Savings Cooper B-Line, Inc Scope AN IN-DEPTH Look AT 2002 NEC Article 392 Cable TraySteel Ventilated Trough Center Supported Cable Tray Uses Permitted. a Wiring Methods Cable Tray MaterialsDefinition. Cable Tray System Cable Tray Manual Uses Permitted. B In Industrial Establishments Uses Permitted. C Equipment Grounding Conductors 392.3B1a392.3B1b 392.3B1cSealing and Drainage. E Cable Seals, Class 1, Division 2 Uses Permitted. E Nonmetallic Cable Tray 502.4B3. Nonincendive Field WiringUses Not Permitted Construction Specifications. a Strength and RigidityCable Tray Manual Construction Specifications. E Fittings Construction Specifications. B Smooth EdgesConstruction Specifications. C Corrosion Protection Construction Specifications. D Side RailsConstruction Specifications. F Nonmetallic Cable Tray Installation. a Complete SystemNomenclature Installation. B Completed Before Installation Installation. D Covers Installation. C SupportsInstallation. G Through Partitions and Walls Installation. F Cables Over VoltsInstallation. H Exposed and Accessible Installation. I Adequate Access Grounding. a Metallic Cable Trays EGC Grounding. B Steel or Aluminum Cable Tray Systems Temperature Rise Test Cable Installation. B Fastened Securely Cable Installation. a Cable SplicesCable Installation. D Connected in Parallel Cable installation. C Bushed Conduit and TubingSheet 3, Example 392.9A1 392.9A2 392.9E2 392.9F2 Single Diameter Inch Conductor Inches Channel Size AWG Technically Undesirable Installation Interpretation #1 Cable Tray Wiring System Design and Installation Hints Cable Tray Manual Cooper B-Line, Inc Cable Tray Accessories Cable Tray Maintenance and RepairFireproofing Cable Tray FRP Cable TRAY. Thermal Contraction and Expansion13B is 128 F. The 125 F line in Table Cable Tray Manual Cooper B-Line, Inc Appendix Pages See Page 29 for Temperature Rise Test illustration Circuit Arrangement for Rigid Conduit Temperature Rise Tests Example NEC .9A1 Example NEC .9A2 Example NEC .9A3 Example NEC .9B Appendix Sheet Start Sizing Cable Tray Per NEC Here Cable Tray Sizing FlowchartYes Ladder Or Vented Trough Project Information Fiberglass-Vinyl Ester ResinLine Series Wire Basket Tray Cable ChannelVentilated Non-Ventilated Cent-R-Rail Cooper B-Line, Inc Cable Tray Manual Line Wire Management Resources Ask the Experts