Siemens 38-3AH3 38 kV instruction manual Racking interlocks Closed circuit breaker interlock

Page 37

The two plates are mounted in alignment and must pass through each other in order for the circuit-breaker vehicle to enter the drawout compartment. The interlock is coded to test rated voltage, as well as interrupting and continuous current ratings. The circuit breaker must equal or exceed all of the cubicle ratings in order to enter the compartment.

2.Racking interlocks

A.CLOSED circuit breaker interlock

Figure 32: Circuit-breaker interlocks and ground disconnect on page 33 shows the location of the CLOSED circuit-breaker interlock-plunger on the circuit-breaker frame.

The purpose of this interlock is to positively block circuit-breaker racking-operations whenever the circuit breaker is CLOSED. The plunger is coupled to the jack shaft as seen in Figure 15: Stored-energy operating mechanism, item 63 on page 20. When the jack shaft rotates to close, the interlock plunger is driven straight downward beneath the frame of the circuit breaker. The downward projecting plunger blocks racking operation when the circuit breaker is CLOSED.

Figure 33: Circuit-breaker compartment (MOC/TOC switch cover plate removed for photo) on page 34 shows the racking mechanism located on the floor in the center of the circuit breaker compartment. Note the two "wing- like" elements that project from the left side of the racking mechanism. The CLOSED circuit breaker interlock plunger, when down (circuit breaker CLOSED), falls behind the front wing in the TEST position and behind the rear wing in the CONNECT position.

Vacuum interrupter/ operator

Trip-free

 

 

 

mechanical-

Trip-free

Spring-dump

Spring-dump

interlock switch

interlock

interlock

tube

 

 

 

 

Figure 34: Interlock mechanisms on the type 38-3AH3 vacuum circuit breaker

The wings are coupled to the element of the racking mechanism that shrouds the racking screw. This shroud must be moved rearward to insert the racking-crank socket in order to engage the racking shaft. With the plunger down (circuit breaker CLOSED), the wings and shroud cannot be moved and thus racking is blocked.

B. Trip-free interlock

Figure 32: Circuit-breaker interlocks and ground disconnect on page 33 shows the trip-free interlock. This interlock is a plunger with a roller on the lower end. The plunger roller tracks the shape of the cam profiles on the racking mechanism in the switchgear (refer to Figure 33: Circuit-breaker compartment (MOC/ TOC switch cover plate removed for photo) on page 34).

37

Image 37 Contents
Answers for energy Qualified person Table of contents Introduction Signal words Hazardous ProceduresIntroduction Introduction Field service operation and warranty issuesReceiving, handling and storage Introduction Receiving procedureShipping damage claims Receiving, handling and storage Handling procedureIndoor storage Storage procedureOutdoor storage Space heatingInspections, checks and tests without control power Installation checks and functional testsDe-energizing control power in switchgear Installation checks and functional tests Type 38-3AH3 vacuum circuit breaker racking Racking crank engagement procedureManual-spring charging check Physical inspectionsSplit-plug jumper connected to circuit breaker Final mechanical inspections without control powerVacuum interrupter/ operator Vacuum interrupters Vacuum interrupter/ operatorPrimary disconnects Phase barriersStored-energy operating mechanism Construction Interrupter/operator moduleSwitching operation Current-path assemblyCircuit-breaker pole Vacuum interrupterType 38-3AH3 vacuum circuit breaker pole section Stored-energy operating mechanism Mode of operation Auxiliary switchOperating mechanism Indirect releases tripping coilsUse of manual-spring operation crank ClosingOpening Trip-free functionalityRapid auto-reclosing Manual operation62.2 62.5.2 50.3.1 53.0 Pawl roller 62.5.2 Close-latch pawl Vacuum interrupter/ operator Discharged Closing Standard Undervoltage optional Indirect releases dual-trip orSecondary shunt release optional 54.2Position a locked Shock absorber Capacitor-trip deviceSecondary disconnect Truck-operated cell TOC switch Mechanism-operated cell MOC switch optionalShutter-operating linkage Secondary disconnect Shutters Rating interlock Trip-free interlockCircuit-breaker frame Ground disconnectVehicle function and operational interlocks Racking mechanismAlignment Interlocks Circuit breaker racking-interlocksRacking interlocks Closed circuit breaker interlock Automatic closing-spring energy release Trip-free interlock position mechanical interlock Introduction and maintenance intervals MaintenanceRecommended hand tools MaintenanceInspection items and tests Recommended maintenance and lubricationChecks of the primary power path Removal from switchgearCleanliness check Circuit Number Maintenance and lubricationInspection of primary disconnects Checks of the stored-energy operator mechanismTypical for all three-phases Manual-spring charging and contact- erosion checks Fastener checkAutomatic spring-charging check control power required Wiring and terminals checkElectrical-control checks Secondary-disconnect checkTypical vacuum interrupter contact curve Vacuum-interrupter mechanical check Spring-charging motor checksHigh-potential tests Vacuum-integrity check using dielectric testHigh-potential test voltages Voltage Frequency withstand Field-test voltageContinuous Contact Inspection and cleaning of circuit- breaker insulationRating a Functional testsOverhaul Replacement at overhaulCircuit-breaker overhaul Circuit breaker Number TypeOverhaul Vacuum interrupter replacementSetting Vacuum interrupter replacement illustration Overhaul Hydraulic shock absorber Checking the contact stroke Open the circuit breakerSub-assembly Inspect for Maintenance and troubleshootingProblem Symptoms Possible causes and remedies Maintenance and troubleshootingClosed Appendix Appendix Maximum design voltage Permissible tripping delay YValues Voltage Voltage range factor K3 Insulation Withstand Voltage levels Lightning-impulse BILLevels Voltage levels Lightning-impulse BIL Rated Maximum design voltageRated Continuous4 Short-circuit at rated maximum design voltage I5, 6Remarks Appendix