Siemens 38-3AH3 38 kV instruction manual Maintenance and troubleshooting

Page 60

Maintenance and troubleshooting

Table 7: Troubleshooting

Problem

Symptoms

Possible causes and remedies

Circuit breaker fails to close.

Closing spring will not automatically charge.

1.

Secondary control circuit is de-energized or

 

 

 

control circuit fuses are blown. Check and

 

 

 

energize or replace if necessary.

 

 

2.

Secondary disconnect contacts 15 or 16 are

 

 

 

not engaging. Check and replace if required.

 

 

3.

Damage to wiring, terminals or connectors.

 

 

 

Check and repair as necessary.

 

 

4.

Failure of charging motor (88.0). Replace if

 

 

 

required.

 

 

5.

Motor cut-off switch LS21 or LS22 fails to

 

 

 

operate. Replace if necessary.

 

 

6.

Mechanical failure of operating mechanism.

 

 

 

Check and contact regional service centers,

 

 

 

the factory or telephone Siemens field

 

 

 

service at +1 (800) 347-6659 or +1 (919)

 

 

 

365-2200 outside the U.S.

 

 

 

 

Closing springs

Closing coil or solenoid

1.

Secondary control circuit de-energized or

charge, but circuit

(52SRC) fails to

 

control circuit fuses blown. Correct as

breaker does not close.

energize. No sound of

 

indicated.

 

circuit breaker closing.

2.

No closing signal to secondary disconnect

 

 

 

 

 

pin 13. Check for continuity and correct

 

 

 

protective relay logic.

 

 

3.

Secondary disconnect contacts 13 or 15 are

 

 

 

not engaging. Check and correct as

 

 

 

required.

 

 

4.

Failure of anti-pump relay (52Y) contacts 21

 

 

 

to 22, 31 to 32 or 13 to 14. Check and

 

 

 

replace as required.

 

 

5.

Failure of close coil (solenoid) (52SRC).

 

 

 

Check and replace as required.

 

 

6.

Auxiliary switch NC contacts 41 to 42 are

 

 

 

open when circuit breaker contacts are

 

 

 

open. Check linkage and switch. Replace or

 

 

 

adjust as necessary.

 

 

7.

Spring-charged switch LS9 NO contacts

 

 

 

remain open after springs are charged.

 

 

 

Check and replace as required.

 

 

 

 

 

Closing coil energizes.

1.

Mechanical failure of operating mechanism.

 

Sound of circuit

 

Check and contact regional service centers,

 

breaker closing is heard

 

the factory or telephone Siemens field

 

but circuit breaker

 

service at +1 (800) 347-6659 or +1 (919)

 

contacts do not close.

 

365-2200 outside the U.S.

 

 

 

 

60

Image 60
Contents Answers for energy Qualified person Table of contents Signal words Hazardous Procedures IntroductionIntroduction Field service operation and warranty issues IntroductionIntroduction Receiving procedure Receiving, handling and storageShipping damage claims Handling procedure Receiving, handling and storageStorage procedure Indoor storageOutdoor storage Space heatingInstallation checks and functional tests Inspections, checks and tests without control powerDe-energizing control power in switchgear Installation checks and functional tests Racking crank engagement procedure Type 38-3AH3 vacuum circuit breaker rackingPhysical inspections Manual-spring charging checkFinal mechanical inspections without control power Split-plug jumper connected to circuit breakerVacuum interrupter/ operator Vacuum interrupter/ operator Vacuum interruptersPhase barriers Primary disconnectsStored-energy operating mechanism Interrupter/operator module ConstructionCurrent-path assembly Switching operationCircuit-breaker pole Vacuum interrupterType 38-3AH3 vacuum circuit breaker pole section Stored-energy operating mechanism Auxiliary switch Mode of operationOperating mechanism Indirect releases tripping coilsClosing Use of manual-spring operation crankTrip-free functionality OpeningRapid auto-reclosing Manual operation62.2 62.5.2 50.3.1 53.0 Pawl roller 62.5.2 Close-latch pawl Vacuum interrupter/ operator Discharged Closing Standard Indirect releases dual-trip or Undervoltage optionalSecondary shunt release optional 54.2Position a locked Capacitor-trip device Shock absorberSecondary disconnect Mechanism-operated cell MOC switch optional Truck-operated cell TOC switchShutter-operating linkage Secondary disconnect Shutters Trip-free interlock Rating interlockCircuit-breaker frame Ground disconnectRacking mechanism Vehicle function and operational interlocksAlignment Interlocks Circuit breaker racking-interlocksRacking interlocks Closed circuit breaker interlock Automatic closing-spring energy release Trip-free interlock position mechanical interlock Maintenance Introduction and maintenance intervalsMaintenance Recommended hand toolsRecommended maintenance and lubrication Inspection items and testsRemoval from switchgear Checks of the primary power pathCleanliness check Maintenance and lubrication Circuit NumberInspection of primary disconnects Checks of the stored-energy operator mechanismTypical for all three-phases Fastener check Manual-spring charging and contact- erosion checksWiring and terminals check Automatic spring-charging check control power requiredElectrical-control checks Secondary-disconnect checkTypical vacuum interrupter contact curve Spring-charging motor checks Vacuum-interrupter mechanical checkVacuum-integrity check using dielectric test High-potential testsHigh-potential test voltages Field-test voltage Voltage Frequency withstandInspection and cleaning of circuit- breaker insulation Continuous ContactRating a Functional testsReplacement at overhaul OverhaulCircuit-breaker overhaul Circuit breaker Number TypeVacuum interrupter replacement OverhaulSetting Vacuum interrupter replacement illustration Overhaul Checking the contact stroke Open the circuit breaker Hydraulic shock absorberMaintenance and troubleshooting Sub-assembly Inspect forMaintenance and troubleshooting Problem Symptoms Possible causes and remediesClosed Appendix Appendix Permissible tripping delay Y Maximum design voltageValues Voltage Voltage range factor K3 Insulation Withstand Voltage levels Lightning-impulse BILRated Maximum design voltage Levels Voltage levels Lightning-impulse BILRated Continuous4 Short-circuit at rated maximum design voltage I5, 6Remarks Appendix

38-3AH3 38 kV specifications

The Siemens 38-3AH3 is a high-voltage circuit breaker designed for medium voltage applications, particularly in substations and industrial environments. This device operates at a voltage level of 38 kV, showcasing Siemens' commitment to innovation and reliability in electrical engineering.

One of the main features of the Siemens 38-3AH3 is its advanced interruption technology, which employs the proven hybrid design combining both gas-insulated and air-insulated technologies. This hybrid approach not only enhances the breaker's performance and reliability but also minimizes its footprint, making it an ideal choice for space-constrained environments.

The Siemens 38-3AH3 uses vacuum interruption technology, allowing for efficient switching with minimal wear and tear. The vacuum interrupters are highly reliable and provide excellent performance under various operating conditions. This technology ensures that the circuit breaker can handle short circuits and overloads effectively, thus protecting the entire electrical system.

Additionally, the Siemens 38-3AH3 incorporates intelligent monitoring systems. These digital technologies provide real-time data on breaker status, operational performance, and maintenance needs. This predictive maintenance capability helps operators to identify potential issues before they develop into significant problems, ultimately leading to reduced downtime and maintenance costs.

Another notable characteristic of the Siemens 38-3AH3 is its high insulation strength. Thanks to its robust design and development, this circuit breaker can withstand adverse environmental conditions, making it suitable for use in diverse geographical locations and climates. Its components are designed to resist contamination and corrosion, ensuring long-term reliability.

The Siemens 38-3AH3 also offers enhanced safety features. It includes protective relays and automatic fault detection systems that isolate faults quickly, preventing damage to downstream equipment. Furthermore, the design allows for easy maintenance, with components that are accessible without the need for extensive disassembly.

In summary, the Siemens 38-3AH3 38 kV circuit breaker is a leading solution in high-voltage protection and control, characterized by its advanced interruption technology, integrated monitoring systems, high insulation strength, and user-friendly maintenance features. Its innovative design and engineering make it a trusted choice for utilities and industrial facilities aiming to enhance the reliability and safety of their electrical systems.