Trane TRG-TRC014-EN manual Single-Duct VAV Systems

Page 26

period two

Components of a VAV System

notes

conditions in the space. The constant sound of the series unit, with the fan

 

Most designers also believe that series units offer improved acoustical

 

operating whenever the space is occupied, is generally preferred to the on-off

 

sound generated by the cycling fan in the parallel unit.

 

However, because the fan runs continuously whenever the space is occupied, a

 

series fan-powered unit consumes more energy than a parallel fan-powered

 

unit. The development of high-efficiency motors has lessoned the energy

 

consumption difference. The fan in a series fan-powered unit also costs more

 

than an equivalent parallel fan-powered unit because it generally requires a

 

larger terminal fan.

 

Fan-powered terminal units without a heating coil are typically used to provide

 

tempering for those zones that require year-round cooling and have relatively

 

high minimum airflow settings, such as the densely occupied interior zones of a

 

building (i.e., a conference room). A fan-powered terminal unit with a heating

 

coil is typically used for spaces that require seasonal cooling and heating, such

 

as the exterior zones of a building. Units with heating coils are the most

 

common of the fan-powered terminal units.

Single-Duct VAV Systems

 

central air handler

 

OA

PA

55°F

90°F

 

[12.8°C]

[32.2°C]

 

 

 

VSD

 

RA

single-duct

EA

VAV terminal units

80°F

 

 

[26.7°C]

 

 

Figure 33

The types of terminal units discussed so far are used in single-duct VAV systems. Single-duct VAV systems use a central return-air path that allows the air from the spaces to come back to the air handler. At the air handler, a portion of this return air is recirculated and mixed with outdoor air (introduced for space ventilation purposes). This mixture of outdoor and recirculated return air, or primary air, is then conditioned and delivered to the VAV terminal units through the supply duct system.

The remainder of the return air is exhausted from the building.

TRG-TRC014-EN

21

Image 26
Contents Air Conditioning Clinic VAV Systems One of the Systems Series Publication of The Trane Company Preface VAV SystemsContents TRG-TRC014-EN What Is Variable Air Volume? Constant-Volume Variable-Temperature SystemConstant Volume-Full Load Constant Volume-Part Load Constant × Supply AirflowConstant Volume-Multiple Spaces FineTerminal Reheat System Variable-Air-Volume VAV System VAV-Full LoadReduced fan energy Reduced refrigeration energy Why VAV? Energy SavingsVAV-Part Load Why VAV? Comfort Dedicated terminal units Dedicated thermostatsSystem Comparison VAVVAV Building Characteristics Variable Thermal Load ProfilesIndependent Space Control Common Return Air PathComponents of a VAV System Components of a VAV SystemVAV Terminal Units VAV Terminal UnitsAir Heating coil Filter Mixing fan Single Duct, Cooling Only Primary air irSpace Heating with a VAV System VAV Reheat Primary airFan-Powered Terminal Units SeriesParallel, Fan-Powered Series, Fan-Powered Parallel Versus Series Fan-Powered Single-Duct VAV Systems Dual-Duct Variable Air Volume to the Space Cool Primary airConstant Air Volume to the Space Single-Fan, Dual-Duct VAV SystemTwo-Fan, Dual-Duct VAV System VAV Terminal Unit Controls VAV Terminal Unit ControlsUpstream Pressure Affects Airflow Pressure-Dependent Control Pressure-Independent ControlPrimary Airflow Measurement Terminal-Unit Control TechnologiesPneumatic Control Electronic Control Direct Digital Control DDC Components of a VAV System Diffusers DiffusersLinear Slot Diffuser EffectCeiling-Diffuser Compatibility Components of a VAV System Supply Duct System Supply Duct SystemStatic regain method Duct DesignEqual friction method Duct Design Recommendations System Configurations Perimeter P Versus InteriorPerimeter Spaces Perimeter SpacesBaseboard Perimeter Heating Overhead Supply Perimeter Heating Heat loss 250 Btu/hr/ft Fan-Powered VAV Dual-Duct VAVInterior Spaces Interior Spaces, Reheat RequiredSmall Buildings Changeover/Bypass VAV SystemOccupied mode Unoccupied mode Morning warm-up/cool-down mode System-Level Control ModesOccupied Mode Unoccupied Mode Morning Warm-up/Cool-down Mode Fan Performance Curve Fan ModulationFan Performance Curve System Resistance Curve System Resistance CurveOperating Point Riding the Fan CurveForward-Curved Centrifugal Fan Fan Modulation Curve Fan Modulation CurveFan Control Loop VAV Fan ModulationFan Modulation Methods Discharge DampersStatic pressure Discharge damper SP loss Inlet Vanes Fan-Speed Control 0 r p mVariable-Pitch Blade Control Fan Modulation Comparisons BI fan with Discharge DampersControlling System Static Pressure Fan Outlet Static-Pressure ControlSupply Duct Static-Pressure Control Sensor located Down supply ductOptimized Static-Pressure Control At fan outletPart-Load Comparison Application Considerations Period fiveSystem-Level Ventilation System-Level VentilationVentilation Reset Freeze Protection for Coils Freeze Protection for CoilsMeasures to Prevent Coil Freeze-Up Part-Load Space Humidity Control Part-Load Space Humidity ControlPart-Load Supply Air Tempering Building Pressure Control Building Pressure ControlDirect Pressurization Control Application Considerations Review Review-Period OneReview-Period Two Review-Period Three Review-Period FourReview-Period Five Trane Air Conditioning ManualReview Quiz Questions for PeriodQuiz TRG-TRC014-EN Answers Glossary Glossary Glossary Trane Company

TRG-TRC014-EN specifications

The Trane TRG-TRC014-EN is a comprehensive technical resource guide that serves as an essential tool for HVAC professionals and engineers looking to enhance their understanding of Trane's commercial HVAC systems. This guide provides an in-depth examination of Trane’s advanced technologies, key features, and design characteristics that position their products as industry leaders in heating, ventilation, and air conditioning.

One of the standout features of the TRG-TRC014-EN is its focus on energy efficiency. Trane continuously works on incorporating cutting-edge technologies that minimize energy consumption while maximizing performance. This includes the use of variable speed compressors and advanced control systems that adapt the HVAC operation according to real-time demand, significantly reducing energy costs for end users.

The guide also highlights Trane’s commitment to sustainable practices. The incorporation of environmentally friendly refrigerants and compliance with regulatory standards ensures that Trane units not only deliver comfort but also contribute to lower environmental impact. The guide provides detailed specifications on these refrigerants, allowing engineers to make informed decisions in line with environmental policies.

Another important aspect of the TRG-TRC014-EN is its technical information regarding system design and application. With comprehensive data on airflow, capacity calculations, and installation techniques, the guide serves as a valuable resource in the design phase of HVAC projects. This ensures that systems are optimized for performance and meet the specific needs of any given commercial space.

Additionally, the TRG-TRC014-EN addresses integration with smart building technologies. Trane units are designed to easily integrate with building management systems (BMS), enabling better monitoring and control of HVAC operations. This compatibility enhances operational efficiency and supports predictive maintenance, reducing downtime and servicing costs.

Moreover, the guide emphasizes Trane’s extensive warranty and service support. Understanding that customer satisfaction extends beyond the sale, Trane provides comprehensive service options that assure users of reliable and prompt support throughout the lifecycle of their HVAC systems.

In conclusion, the Trane TRG-TRC014-EN stands as an essential guide for HVAC professionals seeking to leverage Trane’s innovative technologies and design features. With a strong emphasis on energy efficiency, sustainability, technical accuracy, smart integration, and robust support, this guide underscores Trane's position as a leader in the HVAC industry.