Eclipse Combustion 6500 Unsafe-Flm-Purge, Valve Leakage, Valve Leak Fail, Watchdog Fail

Page 42

Table 10.2 Remote Display Diagnostic Messages (continued)

MESSAGE

TYPE

EXPLANATION

 

 

 

UNSAFE FLAME ON

Hold

Flame signal—actual, induced, or faulty scanner—is detected be-

 

 

fore start-up or after shutdown. The fan is energized. If the cause

 

 

is corrected within 30 seconds, as in afterburn, the control will

 

 

turn off the fan and continue the sequence.

 

 

 

UNSAFE FLAME ON

Lockout

Same conditions as above, except the cause has not been corrected

LKOUT XXXX:XX:XX

 

within 30 seconds, resulting in a lockout and alarm.

 

 

 

UNSAFE–FLM–PURGE

Hold

Flame signal—actual, induced, or faulty scanner—is detected dur-

 

 

ing the selected purge time period. The fan is energized. If the

 

 

cause is corrected within 30 seconds, as in afterburn, the control

 

 

will turn off the fan and continue the sequence.

 

 

 

UNSAFE–FLM–PURGE

Lockout

Same conditions as above, except the cause has not been corrected

LKOUT XXXX:XX:XX

 

within 30 seconds, resulting in a lockout and alarm.

 

 

 

VALVE LEAKAGE

Status

Indicates that the optional valve leak sensing device has been acti-

UNDER TEST XX

 

vated and the test period “XX” has begun.

 

 

 

VALVE LEAK FAIL

Lockout

The test period for valve leak sensing has exceeded XX seconds

LKOUT XXXX:XX:XX

 

and failed; check the gas shut-off valves.

 

 

 

WATCHDOG FAIL

Lockout

Internal control failure; replace controller.

LKOUT XXXX:XX:XX

 

 

 

 

 

XXXXXXX

Status

In combination with other messages, shows the control is in the

XXXXXTESTXX

 

minimum pilot test mode.

 

 

 

42

Eclipse Bi-Flame v1.8, Instruction Manual 826, 05/03

 

Image 42
Contents Bi-Flame Copyright Disclaimer Notice Liability Warranty About this manual Audience Important Notices Document ConventionsTable of Contents Page Page Introduction Product DescriptionSpecifications IntroductionAffectedTerminals Dimensions Main ChassisIntroduction Module Description Identification Power ModuleModules Description Relay ModuleSensor Module Remote DisplayDIP Switch Selection Introduction DIP Switch Location DIP Switch AccessS4 DIP Switches DIP Switch SettingsS2 DIP Switches S6 DIP SwitchesMain Fuel Valve Proof-of-Closure Terminal Function SummaryCombustion Air Flow Check Terminal Low Fire Start TerminalInterrupted or Intermittent Pilot Recycle ModePilot Test Mode Spark, Pilot Flame and Main Flame SeparationLast Recycle by AIR=XXXXXX or Auxiliary InputsHistory Log Last Recycle by FLAME=XXXXXXModulation Contacts Valve Leak Sensing Device Vlsd Interface Valve LeakageValve Leak Fail Lkout Hhhhmmss Remote Display Unit RS232 Communication Interfaces RS485 optionalLimits Reset FaultAlarm AirSystem Faults System Lockout ConditionsSystem Installation Page Remote Reset Remote Display Power must be off when inserting or removing the cableJ6 J3 Wiring Diagram & Connections-Main Chassis Sensor Installation Introduction Sensor WiringDo not ground the shield to terminal GND Flame Rods ScannersScanner Sighting Conditions Test Procedures Introduction Flame Signal Strength Minimum Pilot TestPilot Flame Failure Test Main Flame Faiulre Spark Sighting Test Limits and Interlock TestsIntroduction Maintenance Monthly ChecklistYearly Checklist Troubleshooting Problem Possible Cause Solution Contact Check air filter Check blower rotationRemote Display Messages Bi-Flame Operating Sequence AIR not Proven Lkout Wait for LO.FIRE SwitchAIR Proven Purge AT High FirexxFlame #OX Time = Main Flame on Pilot OFFAutomatic Modulation Main # OX FailedPost Purge Main Valve Fail LkoutRemote Display Diagnostic Messages ListedAlphabetically Message Type ExplanationRemote Display Diagnostic Messages Valve Leak Fail UNSAFE-FLM-PURGEValve Leakage Watchdog FailMetric to English AppendixConversion Factors Metric to MetricIllustrated Parts List Pos Eclipse Qty Description Part Number

6500 specifications

The Eclipse Combustion 6500 is a cutting-edge industrial burner designed to optimize combustion efficiency and reduce emissions in various applications. Known for its innovative approach to fuel burning, the 6500 model combines advanced technology with robust engineering, making it a preferred choice for industries such as power generation, manufacturing, and petrochemicals.

One of the hallmark features of the Eclipse Combustion 6500 is its versatility to operate on multiple fuels, including natural gas, propane, and biogas. This flexibility allows companies to adapt to changing fuel availability and cost, ensuring operational efficiency and economic viability. The burner is designed with a range of firing rates, catering to both small and large-scale applications, which enhances its utility across diverse operational scenarios.

Another significant characteristic of the 6500 is its sophisticated control system. The burner employs advanced digital controls that enable precision in fuel-to-air ratios and overall combustion management. This technology not only optimizes thermal performance but also facilitates compliance with stringent emissions regulations. By continuously monitoring combustion conditions, the 6500 ensures maximum efficiency while minimizing harmful emissions of nitrogen oxides (NOx) and carbon monoxide (CO).

Moreover, the Eclipse Combustion 6500 features a unique combustion geometry. This design promotes a stable flame while maintaining excellent mixing of fuel and air. The result is improved combustion efficiency and a reduction in pollutant formation. The structural integrity of the burner is engineered to handle high temperatures and corrosive environments, ensuring long-term reliability and reduced maintenance needs.

Safety is a paramount consideration in the design of the 6500. Integrated safety systems monitor operational parameters and provide alerts to prevent unsafe conditions. This focus on safety, combined with high performance, ensures that the burner not only meets but exceeds industry standards.

In summary, the Eclipse Combustion 6500 stands out due to its versatility, advanced control technologies, and efficient combustion capabilities. Its design prioritizes safety, reliability, and compliance with environmental regulations, making it an ideal choice for various industrial applications. As industries strive for greener and more efficient operations, the 6500 is poised to play a pivotal role in the evolution of combustion technology.