Eclipse Combustion 6500 instruction manual Remote Display Diagnostic Messages

Page 41

Table 10.2

Remote Display Diagnostic Messages (continued)

 

 

 

 

 

MESSAGE

TYPE

EXPLANATION

 

 

 

 

 

MAIN # ( ) FAILED

Lockout

Main flame was not established during the main burner trial for ignition.

 

 

 

 

 

MAIN FLAME ON

Lockout

Main valve has been energized and main flame proven during trial

 

 

 

 

for ignition.

 

 

 

 

 

MAIN FLAME ON

Status

Pilot valve (strip J2, terminal 5) is de-energized and main flame is on.

 

PILOT OFF

 

 

 

 

 

 

 

 

MAIN VALVE FAIL

Lockout

Main valve proof-of-closure is open before startup or after burner

 

LKOUT XXXX:XX:XX

 

shutdown.

 

 

 

 

 

PILOT FLAME FAIL

Lockout

Pilot flame was not established during the pilot trial for ignition.

 

LKOUT XXXX:XX:XX

 

 

 

 

 

 

 

 

PILOT ON

XX

Status

Pilot flame is proven; transformer is de-energized; remaining

 

 

 

countdown for pilot trial for ignition is “XX”.

 

 

 

 

 

PILOT TRIAL FOR

Status

Pilot valve and ignition transformer are energized; countdown for

 

IGNITION

XX

 

pilot trial for ignition begins at “XX”.

 

 

 

 

 

PLT/MVL ENERGIZ.

Lockout

An external source of voltage is present on the ignition, pilot or

 

XX:XX:XX LOCKOUT

 

main output terminals.

 

 

 

 

 

POST PURGE

Status

15 second post purge is started on burner shutdown; “XX” shows

 

 

XX

 

countdown.

 

 

 

 

 

PROGM SWITCH ERR

Lockout

DIP switch improperly set or changed during cycle.

 

LKOUT XXXX:XX:XX

 

 

 

 

 

 

 

PURGE AT HIGH

Status

Modulating motor is sent to high fire; “XX” shows purge countdown.

 

FIRE

XX

 

 

 

 

 

 

 

RECORD #X

Status

Part of the optional history log which records the total number of

 

 

 

 

operating cycles and the last lockout messages up to a maximum

 

 

 

 

of 10.

 

 

 

 

 

RELAY FAIL

Lockout

Internal relay(s) fail initial check. Check ratings. If lockout still oc-

 

LKOUT XXXX:XX:XX

 

curs after overload is eliminated, replace control.

 

 

 

 

 

SAFE START OK

Status

Control has completed internal safe-start check.

 

 

 

 

 

UNSAFE AIR SHORT

Status

Combustion air switch is closed before start-up or after shut-

 

 

 

 

down; control holds start-up until switch re-opens; if interlocks

 

 

 

 

close before switch opens, alarm will energize in 30 seconds.

 

 

 

 

 

UNSAFE AIR SHORT

Lockout

Same conditions as above, except the interlocks closed for 30 sec-

 

LKOUT XXXX:XX:XX

 

onds before the switch re-opened, causing a lockout and the alarm.

 

 

 

 

 

Eclipse Bi-Flame v1.8, Instruction Manual 826, 05/03

41

 

Image 41
Contents Bi-Flame Copyright Disclaimer Notice Liability Warranty Audience Important Notices Document Conventions About this manualTable of Contents Page Page Product Description IntroductionAffectedTerminals SpecificationsIntroduction Main Chassis DimensionsModules Description Power ModuleIntroduction Module Description Identification Relay ModuleRemote Display Sensor ModuleIntroduction DIP Switch Location DIP Switch Access DIP Switch SelectionS2 DIP Switches DIP Switch SettingsS4 DIP Switches S6 DIP SwitchesCombustion Air Flow Check Terminal Function SummaryMain Fuel Valve Proof-of-Closure Terminal Low Fire Start TerminalPilot Test Mode Recycle ModeInterrupted or Intermittent Pilot Spark, Pilot Flame and Main Flame SeparationHistory Log Auxiliary InputsLast Recycle by AIR=XXXXXX or Last Recycle by FLAME=XXXXXXModulation Contacts Valve Leak Fail Lkout Hhhhmmss Valve Leak Sensing Device Vlsd InterfaceValve Leakage Limits Remote Display UnitRS232 Communication Interfaces RS485 optional Alarm FaultReset AirSystem Lockout Conditions System FaultsSystem Installation Page Power must be off when inserting or removing the cable Remote Reset Remote DisplayJ6 J3 Wiring Diagram & Connections-Main Chassis Do not ground the shield to terminal GND Sensor InstallationIntroduction Sensor Wiring Scanners Flame RodsScanner Sighting Conditions Introduction Flame Signal Strength Minimum Pilot Test Test ProceduresSpark Sighting Test Limits and Interlock Tests Pilot Flame Failure Test Main Flame FaiulreMonthly Checklist Introduction MaintenanceYearly Checklist Contact Check air filter Check blower rotation Troubleshooting Problem Possible Cause SolutionRemote Display Messages Bi-Flame Operating Sequence AIR Proven Wait for LO.FIRE SwitchAIR not Proven Lkout Purge AT High FirexxAutomatic Modulation Main Flame on Pilot OFFFlame #OX Time = Main # OX FailedMain Valve Fail Lkout Post PurgeMessage Type Explanation Remote Display Diagnostic Messages ListedAlphabeticallyRemote Display Diagnostic Messages Valve Leakage UNSAFE-FLM-PURGEValve Leak Fail Watchdog FailConversion Factors AppendixMetric to English Metric to MetricPos Eclipse Qty Description Part Number Illustrated Parts List

6500 specifications

The Eclipse Combustion 6500 is a cutting-edge industrial burner designed to optimize combustion efficiency and reduce emissions in various applications. Known for its innovative approach to fuel burning, the 6500 model combines advanced technology with robust engineering, making it a preferred choice for industries such as power generation, manufacturing, and petrochemicals.

One of the hallmark features of the Eclipse Combustion 6500 is its versatility to operate on multiple fuels, including natural gas, propane, and biogas. This flexibility allows companies to adapt to changing fuel availability and cost, ensuring operational efficiency and economic viability. The burner is designed with a range of firing rates, catering to both small and large-scale applications, which enhances its utility across diverse operational scenarios.

Another significant characteristic of the 6500 is its sophisticated control system. The burner employs advanced digital controls that enable precision in fuel-to-air ratios and overall combustion management. This technology not only optimizes thermal performance but also facilitates compliance with stringent emissions regulations. By continuously monitoring combustion conditions, the 6500 ensures maximum efficiency while minimizing harmful emissions of nitrogen oxides (NOx) and carbon monoxide (CO).

Moreover, the Eclipse Combustion 6500 features a unique combustion geometry. This design promotes a stable flame while maintaining excellent mixing of fuel and air. The result is improved combustion efficiency and a reduction in pollutant formation. The structural integrity of the burner is engineered to handle high temperatures and corrosive environments, ensuring long-term reliability and reduced maintenance needs.

Safety is a paramount consideration in the design of the 6500. Integrated safety systems monitor operational parameters and provide alerts to prevent unsafe conditions. This focus on safety, combined with high performance, ensures that the burner not only meets but exceeds industry standards.

In summary, the Eclipse Combustion 6500 stands out due to its versatility, advanced control technologies, and efficient combustion capabilities. Its design prioritizes safety, reliability, and compliance with environmental regulations, making it an ideal choice for various industrial applications. As industries strive for greener and more efficient operations, the 6500 is poised to play a pivotal role in the evolution of combustion technology.