Trane SYS-APM001-EN manual Water-cooled condenser, Effect of condenser-water temperature

Page 10

Primary System Components

Some chiller controls can accommodate very little flow variation during machine operation.2 Other, more sophisticated, chiller controls allow some flow variation. Some chillers can tolerate flow-rate variations—as much as 50 percent per minute or greater—while others can only tolerate up to 2 percent per minute. It is important that chiller capabilities are matched to system requirements. Contact the chiller manufacturer to determine the allowable rate of flow variation before varying the flow through the evaporator in a chiller. Flow variation is discussed in detail in the section “Variable-Primary- Flow Systems” on page 55.

Water-cooled condenser

To cool a building or process, the transferred heat must ultimately be rejected outdoors or to another system (heat recovery). The total amount of heat rejected includes the sum of the evaporator load, the compressor work, and the motor inefficiency. In a hermetic chiller, where the motor and compressor are in the same housing, these loads are all rejected through the condenser. In an open chiller, where the motor is separate from the compressor and connected by a shaft, the motor heat is rejected directly to the surrounding air. The evaporator load and the compressor work are rejected through the condenser, and the motor heat must be taken care of by the equipment room’s air-conditioning system.

Effect of condenser-water temperature

For a given chiller, as the leaving condenser-water temperature rises, refrigerant temperature and pressure also rise. Conversely, as the leaving condenser-water temperature drops, so do refrigerant temperature and pressure. As the refrigerant pressure and temperature changes, the work a compressor must do also changes. The effect of leaving-condenser-water temperature change on power consumption can be 1.0 to 2.2 percent per degree Fahrenheit [1.8 to 4.0 percent per degree Celsius]. Always consider the energy consumption of the entire system—not just the chiller. It is important to remember that although raising the leaving condenser-water temperature penalizes the chiller energy, it may reduce the energy used by the condenser pumps and cooling tower through the use of reduced flow rates and higher thermal driving-forces on the tower. System interactions are covered in more detail in “System Design Options” beginning on page 27.

Effect of condenser-water flow rate

The condenser is sensitive to the water flow rate. Excessive flow may result in high water velocity, erosion, vibration, or noise, while insufficient flow reduces heat transfer efficiency and causes poor chiller performance. Therefore, condenser-water flow through the chiller should be kept within a specific range of limits, except during transient startup conditions. Contact the manufacturer for these limits. Some chillers may allow extended operation below the selected flow rates.

If water velocity through the condenser tubes is too low for significant periods of time and the water is extremely hard, long-term fouling of the tubes may also occur. Webb and Li1 tested a number of internally-enhanced condenser tubes at low velocity (3.51 ft/s [1.07 m/s]) and high water hardness.

4

Chiller System Design and Control

SYS-APM001-EN

Image 10
Contents May Page Chiller System Design and Control Preface Contents 100 Primary System Components ChillerPrimary System Components Chiller evaporatorEffect of chilled-water temperature Effect of chilled-water flow rate and variationWater-cooled condenser Effect of condenser-water temperatureEffect of condenser-water flow rate Air-cooled versus water-cooled condensers MaintenanceAir-cooled condenser Packaged or Split System?Low-ambient operation Energy efficiencyLoads Air-cooled or water-cooled efficiencyThree-way valve load control Two-way valve load controlVariable-speed pump load control Face-and-bypass dampersChilled-Water Distribution System Chilled-water pumpPump per chiller Distribution pipingManifolded pumps Pumping arrangements Constant flow systemPrimary-secondary system Condenser-Water SystemCooling tower Variable-primary systemEffect of ambient conditions on cooling tower performance Condenser-water pumping arrangementsEffect of load on cooling tower performance Single tower per chillerChiller control Unit-Level ControlsRecommended chiller-monitoring points per Ashrae Standard Centrifugal chiller capacity control Centrifugal chiller with AFDAFD on both chillers Application Considerations Small Chilled-Water Systems 1-2 chillersVariable flow Application Considerations Constant flowCondensing method Parallel or series Application ConsiderationsNumber of chillers Part load system operationManaging control complexity Mid-Sized Chilled-Water Systems ChillersPreferential vs. equalized loading and run-time Large chilled-water system schematic Large Chilled-Water Systems + Chillers, District CoolingPipe size PowerWater Chiller Plant System Performance Chiller performance testingLimitations of field performance testing ControlsSYS-APM001-EN SYS-APM001-EN System Design Options Guidance for Chilled- and Condenser-Water Flow RatesStandard rating temperatures Chilled-Water TemperaturesSystem Design Options Chilled- and Condenser-Water Flow Rates Condenser-Water TemperaturesStandard rating flow conditions System Design Options Selecting flow rates DP2/DP1 = Flow2/Flow11.85 Low-flow conditions for cooling tower Base Case Low FlowTotal system power Component Power kW Base Case Low Flow System summary at full loadCoil response to decreased entering water temperature Chilled water system performance at part loadSmaller tower Entering fluid temperature, F CCooling-tower options with low flow System designΔT2 = 99.1 78 = 21.1F or 37.3 25.6 = 11.7C Same tower, smaller approachSame tower, larger chiller Same tower, smaller approach Present Smaller ApproachRetrofit opportunities Retrofit capacity changes Larger Present Chiller Same towerCost Implications Misconceptions about Low-Flow Rates Misconception 1-Low flow is only good for long piping runsKWh SYS-APM001-EN System Configurations Parallel ChillersSystem Configurations Parallel chillers with separate, dedicated chiller pumpsSeries Chillers Series chillersPrimary-Secondary Decoupled Systems Hydraulic decouplingCheck valves System Configurations Production Production loopSystem Configurations Distribution Distribution-loop benefits of decoupled system arrangementCampus CommonTertiary or distributed Decoupled system-principle of operation Tertiary pumping arrangementFlow-based control Temperature-sensingFlow-sensing Adding a chiller Multiple chilled-water plants on a distribution loopSubtracting a chiller Pump control in a double-ended decoupled system Double-ended decoupled systemChiller sequencing in a double-ended decoupled system Variable-Primary-Flow Systems Other plant designsAdvantages of variable primary flow Operational savings of VPF designsChiller selection requirements Dispelling a common misconceptionFlow, ft.water Flow rate Managing transient water flows Flow-rate changes that result from isolation-valve operationSystem Configurations System design and control requirements Effect of dissimilar evaporator pressure dropsAccurate flow measurement Chiller sequencing in VPF systems Bypass flow controlAdding a chiller in a VPF system Flow-rate-fluctuation examplesSubtracting a chiller in a VPF system Sequencing based on loadOther VPF control considerations Select slow-acting valves to control the airside coilsPlant configuration Consider a series arrangement for small VPF applicationsGuidelines for a successful VPF system Chiller selectionChiller sequencing Plant configurationBypass flow Airside controlCondenser Free Cooling or Water Economizer Heat RecoveryChilled-Water System Variations Plate-and-frame heat exchangerChilled-Water System Variations Refrigerant migrationRefrigerant migration chiller in free-cooling mode Well, river, or lake waterPreferential Loading Preferential loading parallel arrangementPreferential loading sidestream arrangement Sidestream plate-and-frame heat exchangerSidestream with alternative fuels or absorption Chilled-Water System VariationsPreferential loading series arrangement Sidestream system controlSeries-Counterflow Application Series-series counterflowEvaporators Unequal Chiller SizingCondensers Low ΔT Syndrome System Issues and ChallengesAmount of Fluid in the Loop System response to changing conditions System Issues and ChallengesChiller response to changing conditions ExampleMinimum capacity required ContingencyType and size of chiller Water and electrical connections System Issues and Challenges Location of equipmentAlternative Energy Sources Ancillary equipmentAlternative fuel Plant ExpansionThermal storage Applications Outside the Chiller’s Range Retrofit OpportunitiesFlow rate out of range System Issues and Challenges Temperatures out of range Precise temperature controlPrecise temperature control, multiple chillers Chilled-Water System Control Chilled water reset-raising and loweringSystem Controls Chilled-water pump controlSystem Controls Critical valve reset pump pressure optimizationNumber of chillers to operate VFDs and centrifugal chillers performance at 90% load Condenser-Water System ControlMinimum refrigerant pressure differential Chillers DifferenceCondenser-water temperature control Cooling-tower-fan controlChiller-tower energy balance Chiller-tower energy consumptionSystem Controls Variable condenser water flow Chiller-tower-pump balanceDecoupled condenser-water system Effect of chiller load on water pumps and cooling tower fansCDWP-2 Failure Recovery Failure recoveryConclusion Glossary Glossary Pumps systemGlossary References Plant. Idea 88th Annual Conference Proceedings 1997References Engineering July102 Index AshraeIndex 105 106 Page Trane

SYS-APM001-EN specifications

The Trane SYS-APM001-EN is an advanced control system designed for HVAC (Heating, Ventilation, and Air Conditioning) applications, specifically tailored to enhance energy efficiency and system performance. This comprehensive solution integrates cutting-edge technologies to optimize climate control in commercial and industrial environments.

One of the main features of the SYS-APM001-EN is its intuitive user interface. The system is equipped with a large, easy-to-read display that provides real-time data on system performance, energy usage, and environmental conditions. This user-friendly interface makes it simple for operators to monitor and adjust settings, ensuring optimal comfort levels and efficient energy consumption.

Another key characteristic of the SYS-APM001-EN is its advanced data analytics capabilities. The system collects and analyzes data from various sensors throughout the building, providing insights into occupancy patterns, equipment performance, and energy consumption trends. This data-driven approach allows facility managers to make informed decisions about system adjustments, predictive maintenance, and energy savings.

The SYS-APM001-EN also boasts robust integration capabilities. It can seamlessly connect with a variety of building management systems (BMS) and other third-party devices. This interoperability enables a cohesive operational ecosystem where HVAC systems can communicate and cooperate with lighting, security, and fire safety systems, enhancing overall building efficiency.

Energy efficiency is a hallmark of the SYS-APM001-EN, as it implements sophisticated algorithms to optimize system operation. These algorithms adjust equipment performance in real-time based on current conditions, thereby reducing energy waste and lowering operational costs. The system is designed to support multiple energy-saving strategies, including demand-controlled ventilation and optimal start/stop scheduling.

Additionally, the SYS-APM001-EN is built with scalability in mind, accommodating facilities of various sizes and configurations. Whether it’s a small office building or a large industrial complex, the system can be tailored to meet specific needs, ensuring that HVAC performance aligns with operational goals.

In conclusion, the Trane SYS-APM001-EN is an innovative HVAC control solution that emphasizes user experience, data-driven decision-making, and energy efficiency. With its advanced features and technologies, it is an essential tool for optimizing building performance and enhancing occupant comfort while reducing environmental impact.