Trane SYS-APM001-EN manual Application Considerations, Number of chillers, Parallel or series

Page 26

Application Considerations

part of those jobs. See “Energy and economic analysis of alternatives” on page 26.

Number of chillers

The number of chillers to install is a function of redundancy requirements and first cost. In general, the more chillers installed, the higher the initial cost. Therefore, many small systems only use one chiller. Most chillers in the 20 through 200 ton range use multiple compressors with multiple refrigeration circuits and provide a reasonable level of cooling redundancy. The only system controls installed on a single chiller installation may be a clock and ambient lockout switch to enable and disable the chilled-water system. If only one chiller is used, a system that varies the flow rate through the chiller can be quite simple to operate. Minimum and maximum flows and maximum rate of change for the flow would still need to be addressed (see “Variable- Primary-Flow Systems” on page 55).

As systems get larger, the owner may require more redundancy, leading them to install multiple chillers. Some designers use 200 tons as the maximum job size for a single chiller.

When there is more than one chiller, there are many more system control decisions to be made including:

enabling the second chiller,

turning the second chiller off, and

failure recovery.

Two-chiller plants require higher system control intelligence than single chiller plants. Sequencing logic, discussed in “System Configurations” on page 42, varies based on system configuration, and failure recovery is discussed on page 95.

Parallel or series

Parallel configurations are more common than series configurations. (See “Parallel Chillers” on page 42.) In chiller systems with an even number of chillers, there are advantages to putting them into a series configuration, especially if low or variable water flow is desired. This offers the benefits of better system efficiency and higher capacity because the upstream chiller produces water at a warmer temperature. Series chillers should not be applied with low system ΔTs, because the maximum flow through the chillers may be reached. Efforts to eliminate the so-called “Low ΔT syndrome” (page

79)must be addressed for both configurations. The energy and control

requirements of series chillers are covered in “Series Chillers” on page 44.

Part load system operation

For small chilled-water systems, especially those with only one chiller, part load system energy use may be dominated by ancillary equipment, especially in a constant flow system. At low loads, constant speed pumps and tower fans constitute a much larger portion of the chiller plant energy

20

Chiller System Design and Control

SYS-APM001-EN

Image 26
Contents May Page Chiller System Design and Control Preface Contents 100 Primary System Components ChillerPrimary System Components Chiller evaporatorEffect of chilled-water temperature Effect of chilled-water flow rate and variationEffect of condenser-water flow rate Effect of condenser-water temperatureWater-cooled condenser Air-cooled versus water-cooled condensers MaintenanceAir-cooled condenser Packaged or Split System?Low-ambient operation Energy efficiencyLoads Air-cooled or water-cooled efficiencyThree-way valve load control Two-way valve load controlVariable-speed pump load control Face-and-bypass dampersChilled-Water Distribution System Chilled-water pumpManifolded pumps Distribution pipingPump per chiller Pumping arrangements Constant flow systemPrimary-secondary system Condenser-Water SystemCooling tower Variable-primary systemEffect of ambient conditions on cooling tower performance Condenser-water pumping arrangementsEffect of load on cooling tower performance Single tower per chillerRecommended chiller-monitoring points per Ashrae Standard Unit-Level ControlsChiller control Centrifugal chiller capacity control Centrifugal chiller with AFD AFD on both chillers Application Considerations Small Chilled-Water Systems 1-2 chillersCondensing method Application Considerations Constant flowVariable flow Parallel or series Application ConsiderationsNumber of chillers Part load system operationPreferential vs. equalized loading and run-time Mid-Sized Chilled-Water Systems ChillersManaging control complexity Large chilled-water system schematic Large Chilled-Water Systems + Chillers, District CoolingWater PowerPipe size Chiller Plant System Performance Chiller performance testingLimitations of field performance testing ControlsSYS-APM001-EN SYS-APM001-EN System Design Options Guidance for Chilled- and Condenser-Water Flow RatesSystem Design Options Chilled-Water TemperaturesStandard rating temperatures Standard rating flow conditions Condenser-Water TemperaturesChilled- and Condenser-Water Flow Rates System Design Options Selecting flow rates DP2/DP1 = Flow2/Flow11.85 Low-flow conditions for cooling tower Base Case Low FlowTotal system power Component Power kW Base Case Low Flow System summary at full loadCoil response to decreased entering water temperature Chilled water system performance at part loadSmaller tower Entering fluid temperature, F CCooling-tower options with low flow System designΔT2 = 99.1 78 = 21.1F or 37.3 25.6 = 11.7C Same tower, smaller approachSame tower, larger chiller Same tower, smaller approach Present Smaller ApproachRetrofit opportunities Retrofit capacity changes Larger Present Chiller Same towerCost Implications Misconceptions about Low-Flow Rates Misconception 1-Low flow is only good for long piping runsKWh SYS-APM001-EN System Configurations Parallel ChillersSystem Configurations Parallel chillers with separate, dedicated chiller pumpsSeries Chillers Series chillersPrimary-Secondary Decoupled Systems Hydraulic decouplingCheck valves System Configurations Production Production loopSystem Configurations Distribution Distribution-loop benefits of decoupled system arrangementTertiary or distributed CommonCampus Decoupled system-principle of operation Tertiary pumping arrangementFlow-sensing Temperature-sensingFlow-based control Subtracting a chiller Multiple chilled-water plants on a distribution loopAdding a chiller Pump control in a double-ended decoupled system Double-ended decoupled systemChiller sequencing in a double-ended decoupled system Variable-Primary-Flow Systems Other plant designsAdvantages of variable primary flow Operational savings of VPF designsChiller selection requirements Dispelling a common misconceptionFlow, ft.water Flow rate Managing transient water flows Flow-rate changes that result from isolation-valve operationSystem Configurations System design and control requirements Effect of dissimilar evaporator pressure dropsAccurate flow measurement Chiller sequencing in VPF systems Bypass flow controlAdding a chiller in a VPF system Flow-rate-fluctuation examplesSubtracting a chiller in a VPF system Sequencing based on loadOther VPF control considerations Select slow-acting valves to control the airside coilsPlant configuration Consider a series arrangement for small VPF applicationsGuidelines for a successful VPF system Chiller selectionChiller sequencing Plant configurationBypass flow Airside controlCondenser Free Cooling or Water Economizer Heat RecoveryChilled-Water System Variations Plate-and-frame heat exchangerChilled-Water System Variations Refrigerant migrationRefrigerant migration chiller in free-cooling mode Well, river, or lake waterPreferential Loading Preferential loading parallel arrangementPreferential loading sidestream arrangement Sidestream plate-and-frame heat exchangerSidestream with alternative fuels or absorption Chilled-Water System VariationsPreferential loading series arrangement Sidestream system controlSeries-Counterflow Application Series-series counterflowCondensers Unequal Chiller SizingEvaporators Amount of Fluid in the Loop System Issues and ChallengesLow ΔT Syndrome System response to changing conditions System Issues and ChallengesChiller response to changing conditions ExampleType and size of chiller ContingencyMinimum capacity required Water and electrical connections System Issues and Challenges Location of equipmentAlternative Energy Sources Ancillary equipmentThermal storage Plant ExpansionAlternative fuel Flow rate out of range Retrofit OpportunitiesApplications Outside the Chiller’s Range System Issues and Challenges Temperatures out of range Precise temperature controlPrecise temperature control, multiple chillers Chilled-Water System Control Chilled water reset-raising and loweringSystem Controls Chilled-water pump controlNumber of chillers to operate Critical valve reset pump pressure optimizationSystem Controls VFDs and centrifugal chillers performance at 90% load Condenser-Water System ControlMinimum refrigerant pressure differential Chillers DifferenceCondenser-water temperature control Cooling-tower-fan controlChiller-tower energy balance Chiller-tower energy consumptionSystem Controls Variable condenser water flow Chiller-tower-pump balanceDecoupled condenser-water system Effect of chiller load on water pumps and cooling tower fansCDWP-2 Failure Recovery Failure recoveryConclusion Glossary Glossary Pumps systemGlossary References Plant. Idea 88th Annual Conference Proceedings 1997References Engineering July102 Index AshraeIndex 105 106 Page Trane