Trane SYS-APM001-EN manual Chilled-Water Temperatures, System Design Options

Page 34

Chilled water (without antifreeze) at 34°F (1.1°C) is possible with some chillers that use sophisticated evaporator-design and chiller-control methods.

28

System Design Options

recommends a design method that starts with condenser-water temperature difference of 12°F to 18°F [7°C to 10°C].

Standard rating temperatures

Currently, the standard rating condition temperatures in ARI 550/5905 and ARI 5609 are:

Evaporator leaving water temperature: 44°F [6.7°C]

Water-cooled condenser, entering water temperature: 85°F [29.4°C]

Air-cooled condenser, entering air dry bulb: 95°F [35.0°C]

For years, these temperature definitions were the benchmarks in system designs. Today, designers apply a variety of different temperatures.

ARI 550/590 reflects this trend by allowing the chilled-water and condenser- water temperatures to be selected at non-standard points and the chiller to be tested as specified by the standard.

Chilled-Water Temperatures

Currently, comfort cooling systems are designed with chilled-water supply temperatures that range from 44°F [6.7°C] to 38°F [3.3°C], and, in some cases, as low as 34°F [1.1°C]. Reasons to decrease the chilled-water temperature include the following:

The system design more readily accommodates wider temperature differences (lower flow rates) than the standard rating conditions (see “Selecting flow rates” on page 30).

Lower water temperature allows lower air temperatures (and flows) to be selected, resulting in reduced airside installed and operating costs.

Colder water in the same chilled-water coil may provide better dehumidification.

Colder water can be used to increase the capacity of an existing chilled- water distribution system. In some instances, this can save significant capital expenditures to add capacity to large central plants that have reached their flow limits.

Some system designers hesitate to use lower chilled-water temperatures, concerned that the chiller will become less efficient. As discussed in “Effect of chilled-water temperature” on page 3:

Lower chilled-water temperature makes the chiller work harder. However, while the lower water temperature increases chiller energy consumption, it significantly reduces the chilled-water flow rate and pump energy. This combination often lowers system energy consumption.

Lower chilled-water temperatures may require more insulation on piping to prevent unwanted condensation (“sweating”). Ensure that pipes are properly insulated at all water temperatures. Lower temperature water often does not require more insulation.

Chiller System Design and Control

SYS-APM001-EN

Image 34
Contents May Page Chiller System Design and Control Preface Contents 100 Primary System Components ChillerPrimary System Components Chiller evaporatorEffect of chilled-water temperature Effect of chilled-water flow rate and variationWater-cooled condenser Effect of condenser-water temperatureEffect of condenser-water flow rate Air-cooled versus water-cooled condensers MaintenanceAir-cooled condenser Packaged or Split System?Low-ambient operation Energy efficiencyLoads Air-cooled or water-cooled efficiencyThree-way valve load control Two-way valve load controlVariable-speed pump load control Face-and-bypass dampersChilled-Water Distribution System Chilled-water pumpPump per chiller Distribution pipingManifolded pumps Pumping arrangements Constant flow systemPrimary-secondary system Condenser-Water SystemCooling tower Variable-primary systemEffect of ambient conditions on cooling tower performance Condenser-water pumping arrangementsEffect of load on cooling tower performance Single tower per chillerChiller control Unit-Level ControlsRecommended chiller-monitoring points per Ashrae Standard Centrifugal chiller capacity control Centrifugal chiller with AFDAFD on both chillers Application Considerations Small Chilled-Water Systems 1-2 chillersVariable flow Application Considerations Constant flowCondensing method Parallel or series Application ConsiderationsNumber of chillers Part load system operationManaging control complexity Mid-Sized Chilled-Water Systems ChillersPreferential vs. equalized loading and run-time Large chilled-water system schematic Large Chilled-Water Systems + Chillers, District CoolingPipe size PowerWater Chiller Plant System Performance Chiller performance testingLimitations of field performance testing Controls SYS-APM001-EN SYS-APM001-EN System Design Options Guidance for Chilled- and Condenser-Water Flow RatesStandard rating temperatures Chilled-Water TemperaturesSystem Design Options Chilled- and Condenser-Water Flow Rates Condenser-Water TemperaturesStandard rating flow conditions System Design Options Selecting flow rates DP2/DP1 = Flow2/Flow11.85 Low-flow conditions for cooling tower Base Case Low FlowTotal system power Component Power kW Base Case Low Flow System summary at full loadCoil response to decreased entering water temperature Chilled water system performance at part loadSmaller tower Entering fluid temperature, F CCooling-tower options with low flow System designΔT2 = 99.1 78 = 21.1F or 37.3 25.6 = 11.7C Same tower, smaller approachSame tower, larger chiller Same tower, smaller approach Present Smaller ApproachRetrofit opportunities Retrofit capacity changes Larger Present Chiller Same towerCost Implications Misconceptions about Low-Flow Rates Misconception 1-Low flow is only good for long piping runsKWh SYS-APM001-EN System Configurations Parallel ChillersSystem Configurations Parallel chillers with separate, dedicated chiller pumpsSeries Chillers Series chillersPrimary-Secondary Decoupled Systems Hydraulic decouplingCheck valves System Configurations Production Production loopSystem Configurations Distribution Distribution-loop benefits of decoupled system arrangementCampus CommonTertiary or distributed Decoupled system-principle of operation Tertiary pumping arrangementFlow-based control Temperature-sensingFlow-sensing Adding a chiller Multiple chilled-water plants on a distribution loopSubtracting a chiller Pump control in a double-ended decoupled system Double-ended decoupled systemChiller sequencing in a double-ended decoupled system Variable-Primary-Flow Systems Other plant designsAdvantages of variable primary flow Operational savings of VPF designsChiller selection requirements Dispelling a common misconceptionFlow, ft.water Flow rate Managing transient water flows Flow-rate changes that result from isolation-valve operationSystem Configurations System design and control requirements Effect of dissimilar evaporator pressure dropsAccurate flow measurement Chiller sequencing in VPF systems Bypass flow controlAdding a chiller in a VPF system Flow-rate-fluctuation examplesSubtracting a chiller in a VPF system Sequencing based on loadOther VPF control considerations Select slow-acting valves to control the airside coilsPlant configuration Consider a series arrangement for small VPF applicationsGuidelines for a successful VPF system Chiller selectionChiller sequencing Plant configurationBypass flow Airside controlCondenser Free Cooling or Water Economizer Heat RecoveryChilled-Water System Variations Plate-and-frame heat exchangerChilled-Water System Variations Refrigerant migrationRefrigerant migration chiller in free-cooling mode Well, river, or lake waterPreferential Loading Preferential loading parallel arrangementPreferential loading sidestream arrangement Sidestream plate-and-frame heat exchangerSidestream with alternative fuels or absorption Chilled-Water System VariationsPreferential loading series arrangement Sidestream system controlSeries-Counterflow Application Series-series counterflowEvaporators Unequal Chiller SizingCondensers Low ΔT Syndrome System Issues and ChallengesAmount of Fluid in the Loop System response to changing conditions System Issues and ChallengesChiller response to changing conditions ExampleMinimum capacity required ContingencyType and size of chiller Water and electrical connections System Issues and Challenges Location of equipmentAlternative Energy Sources Ancillary equipmentAlternative fuel Plant ExpansionThermal storage Applications Outside the Chiller’s Range Retrofit OpportunitiesFlow rate out of range System Issues and Challenges Temperatures out of range Precise temperature controlPrecise temperature control, multiple chillers Chilled-Water System Control Chilled water reset-raising and loweringSystem Controls Chilled-water pump controlSystem Controls Critical valve reset pump pressure optimizationNumber of chillers to operate VFDs and centrifugal chillers performance at 90% load Condenser-Water System ControlMinimum refrigerant pressure differential Chillers DifferenceCondenser-water temperature control Cooling-tower-fan controlChiller-tower energy balance Chiller-tower energy consumptionSystem Controls Variable condenser water flow Chiller-tower-pump balanceDecoupled condenser-water system Effect of chiller load on water pumps and cooling tower fansCDWP-2 Failure Recovery Failure recoveryConclusion Glossary Glossary Pumps systemGlossary References Plant. Idea 88th Annual Conference Proceedings 1997References Engineering July102 Index AshraeIndex 105 106 Page Trane