Page 96
System Controls
The flow reduction options include:
• Cooling tower bypass
• Chiller bypass
• One or two throttling valves in the condenser-water pipe with the pump riding its curve
• A variable-speed condenser water pump
After the minimum-pressure differential is reached, the flow may be increased as long as that minimum-pressure difference is maintained. Some designers and operators become concerned with possible fouling of condenser-water tubes during these start-up conditions. There is little to fear due to the short duration of reduced flow operation and the limited occurrences. The advantages and disadvantages of these options are discussed in a variety of publications.36,37
Condenser-water temperature control
Cooling-tower-fan control
Cooling towers operate to produce a desired sump water temperature. As the heat rejection load and ambient wet-bulb temperature change, the cooling tower fans must move more or less air to produce the desired water temperature.
Cycling a single fan. Cycling a single fan on and off is one method to maintain rough water temperature control. Since airflow changes greatly between fan speeds, so does heat rejection. Temperature swings of 7°F to 10°F [3.9°C to 5.6°C] are not uncommon. Some chillers, especially older chillers with pneumatic controls, may operate poorly in response to these changing temperatures. Make sure that the fan does not cycle too often and damage the motor, drive, or fan assembly.
Two-speed fans. The installation of two-speed cooling tower fans is an option that reduces temperature swings. Typically, the low fan speed is between 50 and 70 percent of full speed. Since the heat rejection changes roughly in proportion with the fan speed, the temperature swing will be only 50 to 75 percent of cycling a single fan. Again, take care not to cycle too often between speeds—or the gear box may incur excessive wear and fail. A distinct advantage of two-speed fans is that at low speed, the fan power is greatly reduced. Since the fan power varies with the cube of the speed (approximately) the power at half speed is about 15 percent of full speed.
“Pony” motors. Another option offered by cooling-tower manufacturers is to have two separate motors available to drive the fan. The smaller motor is referred to as a “pony” motor. It operates at two-thirds of the full speed and uses about 30 percent of the full speed power. While controlling the tower, it is important to minimize cycling between speeds.
Variable-speed drives. Because the cost of variable-speed drives for cooling- tower fans has decreased, variable-speed drives have become more
90 | Chiller System Design and Control | SYS-APM001-EN |
Contents
May
Page
Chiller System Design and Control
Preface
Contents
100
Primary System Components
Chiller
Primary System Components
Chiller evaporator
Effect of chilled-water temperature
Effect of chilled-water flow rate and variation
Effect of condenser-water temperature
Water-cooled condenser
Effect of condenser-water flow rate
Maintenance
Air-cooled condenser
Air-cooled versus water-cooled condensers
Packaged or Split System?
Low-ambient operation
Energy efficiency
Loads
Air-cooled or water-cooled efficiency
Three-way valve load control
Two-way valve load control
Variable-speed pump load control
Face-and-bypass dampers
Chilled-Water Distribution System
Chilled-water pump
Distribution piping
Pump per chiller
Manifolded pumps
Pumping arrangements
Constant flow system
Condenser-Water System
Cooling tower
Primary-secondary system
Variable-primary system
Condenser-water pumping arrangements
Effect of load on cooling tower performance
Effect of ambient conditions on cooling tower performance
Single tower per chiller
Unit-Level Controls
Chiller control
Recommended chiller-monitoring points per Ashrae Standard
Centrifugal chiller capacity control
Centrifugal chiller with AFD
AFD on both chillers
Application Considerations
Small Chilled-Water Systems 1-2 chillers
Application Considerations Constant flow
Variable flow
Condensing method
Application Considerations
Number of chillers
Parallel or series
Part load system operation
Mid-Sized Chilled-Water Systems Chillers
Managing control complexity
Preferential vs. equalized loading and run-time
Large chilled-water system schematic
Large Chilled-Water Systems + Chillers, District Cooling
Power
Pipe size
Water
Chiller performance testing
Limitations of field performance testing
Chiller Plant System Performance
Controls
SYS-APM001-EN
SYS-APM001-EN
System Design Options
Guidance for Chilled- and Condenser-Water Flow Rates
Chilled-Water Temperatures
Standard rating temperatures
System Design Options
Condenser-Water Temperatures
Chilled- and Condenser-Water Flow Rates
Standard rating flow conditions
System Design Options Selecting flow rates
DP2/DP1 = Flow2/Flow11.85
Low-flow conditions for cooling tower Base Case Low Flow
Total system power Component Power kW Base Case Low Flow
System summary at full load
Coil response to decreased entering water temperature
Chilled water system performance at part load
Entering fluid temperature, F C
Cooling-tower options with low flow
Smaller tower
System design
ΔT2 = 99.1 78 = 21.1F or 37.3 25.6 = 11.7C
Same tower, smaller approach
Same tower, larger chiller
Same tower, smaller approach Present Smaller Approach
Retrofit opportunities
Retrofit capacity changes Larger Present Chiller Same tower
Cost Implications
Misconceptions about Low-Flow Rates
Misconception 1-Low flow is only good for long piping runs
KWh
SYS-APM001-EN
System Configurations
Parallel Chillers
System Configurations
Parallel chillers with separate, dedicated chiller pumps
Series Chillers
Series chillers
Primary-Secondary Decoupled Systems
Hydraulic decoupling
Check valves
System Configurations Production
Production loop
System Configurations Distribution
Distribution-loop benefits of decoupled system arrangement
Common
Campus
Tertiary or distributed
Decoupled system-principle of operation
Tertiary pumping arrangement
Temperature-sensing
Flow-based control
Flow-sensing
Multiple chilled-water plants on a distribution loop
Adding a chiller
Subtracting a chiller
Pump control in a double-ended decoupled system
Double-ended decoupled system
Chiller sequencing in a double-ended decoupled system
Variable-Primary-Flow Systems
Other plant designs
Advantages of variable primary flow
Operational savings of VPF designs
Chiller selection requirements
Dispelling a common misconception
Flow, ft.water Flow rate
Managing transient water flows
Flow-rate changes that result from isolation-valve operation
System Configurations
System design and control requirements
Effect of dissimilar evaporator pressure drops
Accurate flow measurement
Chiller sequencing in VPF systems
Bypass flow control
Adding a chiller in a VPF system
Flow-rate-fluctuation examples
Subtracting a chiller in a VPF system
Sequencing based on load
Other VPF control considerations
Select slow-acting valves to control the airside coils
Plant configuration
Consider a series arrangement for small VPF applications
Guidelines for a successful VPF system
Chiller selection
Plant configuration
Bypass flow
Chiller sequencing
Airside control
Heat Recovery
Chilled-Water System Variations
Condenser Free Cooling or Water Economizer
Plate-and-frame heat exchanger
Chilled-Water System Variations
Refrigerant migration
Refrigerant migration chiller in free-cooling mode
Well, river, or lake water
Preferential Loading
Preferential loading parallel arrangement
Preferential loading sidestream arrangement
Sidestream plate-and-frame heat exchanger
Sidestream with alternative fuels or absorption
Chilled-Water System Variations
Preferential loading series arrangement
Sidestream system control
Series-Counterflow Application
Series-series counterflow
Unequal Chiller Sizing
Evaporators
Condensers
System Issues and Challenges
Low ΔT Syndrome
Amount of Fluid in the Loop
System Issues and Challenges
Chiller response to changing conditions
System response to changing conditions
Example
Contingency
Minimum capacity required
Type and size of chiller
System Issues and Challenges Location of equipment
Alternative Energy Sources
Water and electrical connections
Ancillary equipment
Plant Expansion
Alternative fuel
Thermal storage
Retrofit Opportunities
Applications Outside the Chiller’s Range
Flow rate out of range
System Issues and Challenges Temperatures out of range
Precise temperature control
Precise temperature control, multiple chillers
Chilled water reset-raising and lowering
System Controls
Chilled-Water System Control
Chilled-water pump control
Critical valve reset pump pressure optimization
System Controls
Number of chillers to operate
Condenser-Water System Control
Minimum refrigerant pressure differential
VFDs and centrifugal chillers performance at 90% load
Chillers Difference
Condenser-water temperature control
Cooling-tower-fan control
Chiller-tower energy balance
Chiller-tower energy consumption
System Controls Variable condenser water flow
Chiller-tower-pump balance
Decoupled condenser-water system
Effect of chiller load on water pumps and cooling tower fans
CDWP-2
Failure Recovery
Failure recovery
Conclusion
Glossary
Glossary
Pumps system
Glossary
References
Plant. Idea 88th Annual Conference Proceedings 1997
References
Engineering July
102
Index
Ashrae
Index
105
106
Page
Trane